
西北工业大学计算机学院生产实习
-第四队学习资料

指导教师：崔禾磊 副教授

2019年7月1日

注意：仅限小组内同学交流学习用，请勿转发或上传网络！

目录

▪ 项目背景介绍

▪ 重要文献总结

2

Background

▪ Digital data are explosively generated nowadays.
• It is expected to reach 44 zettabytes by 2020.*

• The Internet is under tremendous pressure due to the exponential
growth in bandwidth demand.

▪ Online storage service is demanded.
• Trend from simple backup services to cloud storage infrastructures.

*IDC Report, Executive Summary: Data Growth, Business Opportunities, and IT Imperatives, 2014.

3

Deduplication = Savings!

▪ Data redundancy are everywhere!
• Can waste valuable storage and bandwidth.

▪ Data deduplication has been widely adopted by existing cloud
storage services.

▪ Cross-user data deduplication can save storage costs by over 50% in
standard file systems, and by up to 90-95% for back-up applications*.

A B C D

B D E F C

E B

A

Deduplication A B C

D E F

*Armknecht et al., “Transparent Data Deduplication in the Cloud”, in Proc. of ACM CCS’15.

4

Caution!

▪ Exposing content-sensitive data to
cloud raises privacy concerns.
• Internal threats, e.g., software bugs;

• External threats, e.g., compromised by
an adversary.

▪ It is desired to achieve deduplication
and encryption simultaneously. Source: http://www.informationisbeautiful.net/

visualizations/worlds-biggest-data-breaches-hacks/

5

However, …

▪ Conventional encryption approaches:
• Randomized ciphertexts.

▪ Deduplication methods:
• Find identical files even being encrypted.

▪ Possible fix - 1: attach file hash H(f) to ciphertexts?
• Cross-user decryption is not possible.

▪ E.g., the user with KB cannot decrypt cA.

▪ Possible fix - 2: share a network-wide key?
• No compromise resilience.

▪ E.g., All data is insecure even if one client is compromised.

f

f

cA

cB

Symmetric
encryptionKA

KB

Diametrically opposed
to each other.

Pr[cA = cB] is negligible.
------>
Server has to store
both cA and cB.

Security of symmetric
encryption.

6

Convergent Encryption (CE)

▪ Later formalized as Message-Locked Encryption (MLE).
• A cryptographic primitive for deduplication over ciphertexts.

• Core idea: the encryption key is derived from the message itself.

* Douceur et al., “Reclaiming Space from Duplicate Files in a Serverless Distributed File System”, in Proc. of IEEE ICDCS, 2002.
* Bellare et al., “Message-Locked Encryption and Secure Deduplication”, in Proc. of EUROCRYPT, 2013.

f

f

client server

Deterministic
encryption c

c

Hash
tag

tag

=
=

h

h

Hash as the key!

Hash

same file --> same ciphertext --> same tag

7

▪ Goal: provide data security, against both inside and outside
adversaries, without compromising the space efficiency
achievable through deduplication techniques.

▪ A hot topic in recent years: (to just list a few)
• [DABST, ICDCS’02] -> convergent encryption.

• [BKR, Eurocrypt’13] -> formalization of all the ad-hoc designs.

• [BKR, USENIX Security’13] -> address offline attack via additional server.

• [LAP, CCS’15] -> remove additional server.

• [CMYG, TIFS’15] -> target big data and reduce metadata size.

• [ZYWJWG, AsiaCCS’15] -> connect with multimedia applications.

• [ZC, AsiaCCS’17] -> efficiently update large encrypted files.

• …

▪ However, secure and advanced applications are not fully studied.

Secure Data Deduplication

8

Strategy – Deduplication Granularity

• File-level deduplication:
▪ The data redundancy is exploited on the file level.

▪ Only one instance of the file is saved and subsequent copies are
replaced with a “stub” that points to the original file.

• Block-level deduplication:
▪ The data redundancy is exploited on the block level, where each file is

divided into multiple blocks (or segment, chunks).

▪ The block size can be either fixed or variable in practice.

Metric File-level Block-level

Searching Index size Small Large

Processing time Quick Slow

Deduplication ratio Low High

9

Strategy – Deduplication Architecture

• Client-side deduplication:
▪ Deduplication acts on the data at the client before it is transferred.

• The client communicates with the backup server (by sending hash
signatures) to check for the existence of files or blocks.

• If the server has the file, no need to upload.

▪ Saves bandwidth as well as storage.

▪ Known also as “Source-based deduplication” or “WAN deduplication”.

• Server-side deduplication:
▪ The target storage server handles deduplication, and the client is

unaware of any deduplication that might occur.

▪ Improve storage utilization, but does not save bandwidth.

▪ Known also as “Target-based deduplication” or “Destination-based
deduplication”.

10

目录

▪ 项目背景介绍

▪ 重要文献总结

11

Reclaiming Space from Duplicate Files in
a Serverless Distributed File System

John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon,
and Marvin Theimer

In Proc. of IEEE ICDCS, 2002

12

Target Problem

• To free space for storing data replicas, the system needs to
group incidentally duplicated files. Meanwhile, the stored
data should be encrypted for privacy protection.

• However, using a conventional cryptosystem to encrypt files is
not suitable here.
▪ Two identical files encrypted with different users’ keys would have

different encrypted representations, and the system can neither
recognize that the files are identical or coalesce the encrypted files
into the space of a single file.

▪ Unless it had access to the users’ private keys.

13

Convergent Encryption

• A cryptosystem that produces identical ciphertext files from
identical plaintext files, irrespective of their encryption keys.
▪ k Hash(m), where Hash() is a cryptographic hash function;

▪ c Enc(k, m), where Enc() is a symmetric encryption algorithm;

▪ m Dec(k, c), where Dec() is a symmetric decryption algorithm.

Hash

Enc

Decm k

c

m

14

Conclusion

• Using convergent encryption (CE), the system, without
knowledge of users’ keys, can
▪ determine that two files are identical;

▪ store them in the space of a single file.

• However, it deliberately leaks a controlled amount of
information, namely whether or not the plaintexts of two
encrypted messages are identical.

15

Side channels in cloud services:
Deduplication in cloud storage

Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg

IEEE Security & Privacy, 2010, Nov. 8(6):40-7.

16

Target Problem

• Although deduplication is most effective when applied across
multiple users, cross-user deduplication has serious privacy
implications.
▪ Source-based deduplication: deduplication must be performed at the

client side.

▪ Cross-user deduplication: Each file or block is compared to the data of
other users, and is deduped if an identical copy is already available at
the server.

17

Security Issues

• They performed the following test to identify services that
perform source-based cross-user deduplication:
▪ Installed the service’s client software on two different computers and

created two different user accounts.

▪ Used one account to upload a file.

▪ Then used the second account to upload the same file, checking
whether it was indeed uploaded.

• If the file wasn’t retransmitted over the network, concluded
that the backup service performed source-based.

18

Security Issues

• They identified the following services that perform cross-user,
source-based deduplication (2010, then):
▪ Dropbox

▪ MozyHome

▪ Memopal

• Three attacks on online storage services are described.
▪ The first two let an attacker learn about the contents of other users’

file, the third attack describes a new covert channel.

19

Attack I: Identifying Files

• An attacker Alice wants to learn information about Bob, a
cloud storage service user.

• If Alice suspects that Bob has some specific sensitive file X
that’s unlikely to be in the possession of any other users, she
can use deduplication to check whether this conjecture is
true.

• All Alice needs to do is try to backup a copy of X and check
whether deduplication occurs.

20

Attack II: Learning the Contents of Files

• Attack I only lets the attacker check whether a specific file is
stored in the cloud storage service.

• The attacker might apply this attack to multiple versions of
the same file, essentially performing a brute-force attack over
all possible values of the file contents.

• For example:

Bob

Server

Alice

…
Name: Bob
Salary: 5000 HKD
Date: 1-Jan-2016
…

…
Name: Bob
Salary: XXXX HKD
Date: 1-Jan-2016
…

Tries all possible values to detect which
version occurs deduplication.

21

Attack III: A Covert Channel

• Suppose Alice installed some malicious software on Bob’s
machine.

• The malicious software can send bits by using deduplication
services (covert channel) from Bob’s machine to Alice, without
detection.

22

How a single bit can be transferred?

• The software generates one of two versions of a file, X0 or X1,
and saves it on Bob’s machine.
▪ Alice can reproduce X0 or X1 on demand, as she creates the software.

• If it wants to transfer the message “0”, it saves the file X0;
otherwise, it saves the file X1.

• The files must be sufficiently random so that it’s unlikely that
any other user generates identical files.

X0

X1

0

1

X

23

How a single bit can be transferred?

• When Bob runs a backup and stores the file on the online
storage service.

• Alice then performs a backup with the same service as Bob
and learns which of the files, X0 or X1, was previously stored.

• She learns what message the software sent.

X0 Bob

Server

Alice

Notices that X0 is uploaded.
Thus, obtain “0”.

X0 X1

24

Solutions

• Using encryption to stop deduplication:
▪ Encrypt their data with their own personal keys.

▪ Deduplication benefits will be dismissed.

• Performing deduplication at the servers:
▪ Files are always uploaded and the deduplication occurs at server side.

▪ It will eliminate all of deduplication’s bandwidth savings.

• A randomized solution:☺
▪ Assigning a random threshold for every file and performing

deduplication only if the number of copies of the file exceeds this
threshold.

▪ Weakening the correlation between deduplication and the existence
of files in the storage service can reduce the risks.

25

A Naïve Solution

• Using a global threshold?
▪ The server sets a global threshold t (say, t = 10), and performs

deduplication of a file only if at least t copies of the file have been
uploaded.

▪ In this case, Alice’s uploading of a single copy of the file doesn’t reveal
whether Bob previously uploaded this file.

▪ However, Alice can upload many copies of the file (even using multiple
user identities) and check whether deduplication occurs after she
uploads t or t − 1 copies of it.

▪ The latter case indicates that a different user uploaded a copy.

• We can always assume that Alice can know the threshold t by
conducting simple experiments to reveal the value of t.
▪ E.g., using an unique file to test when deduplication occurs.

26

A Randomized Solution

• The figure details the operations performed when a client
makes a backup request.
▪ The server keeps an independent random threshold (TX) for every file,

which is chosen uniformly at random in a range [2, d], where d is a
parameter that might be public.

▪ If # of the document upload times (CX) is above the threshold, the
system performs client-side deduplication. No content is sent over the
network.

▪ Otherwise, deduplication is performed only at the server side.
27

Security Analysis

• To show that this solution doesn’t reveal too much information
about the inclusion of any file X in the data stored by the server,
we compare the attacker’s views in two instances.
▪ First, another user has already uploaded the file X;

▪ Second, no copy of X has previously been uploaded.

• If we can ensure that distinguishing between these two cases is
difficult, then we can say that uploading a copy of the file
doesn’t substantially affect the attacker’s view.

28

Security Analysis Cont.

• Consider three types of events in which the attacker wants to
identify whether a (single) copy of a document was uploaded:
▪ First, the attacker uploads a single copy of X and finds that

deduplication occurs.

• It therefore immediately learns that TX = 2 and that a copy of X was
previously uploaded by another user.

• The probability of TX = 2 is 1/(d-1).

▪ Second, the attacker must upload d copies of X under different
identities before deduplication occurs.

• It therefore knows that TX = d and no copy of X was previously uploaded.

• The probability of TX = d is also 1/(d-1).

▪ Note that the two events cannot occur simultaneously.

29

Security Analysis Cont.

• Third, if deduplication occurs after the attacker uploads 2 ≤ t <
d copies of X, one of two cases could have occurred:
▪ Either a copy of X was previously uploaded, and the threshold is TX = t

+ 1;

▪ Or no copy of X was previously uploaded, and the threshold is TX = t.

• We cannot distinguish the above two cases, because the TX

is chosen uniformly from [2, d].
▪ The probability that TX was set to either t or t + 1 is exactly the same,

regardless of whether X was uploaded.

▪ So this does not leak any information about whether the file has been
uploaded before.

• That means the occurrence of deduplication does not add any
information about whether X was uploaded to the server.

30

Conclusion

• Observe that under the condition that X was previously
uploaded,

• the first event (i.e., dedup after 1 copy upload), which leaks
information, occurs with probability 1/(d − 1),

• whereas the third event, which doesn’t leak any information,
occurs with probability 1 – 1/(d – 1).

▪ If X wasn’t previously uploaded,

• the second event (i.e., dedup after d copies upload) occurs with
probability 1/(d − 1),

• whereas the third event occurs with probability 1 − 1/(d – 1).

▪ Note that for any file only one of the two conditions holds.

31

Conclusion

• Theorem 1. For a fraction of 1 − 1/(d – 1) of the files, the
solution they have described leaks no information that lets an
attacker distinguish between the case in which a single copy
of a file was previously uploaded and the case in which the
file wasn’t previously uploaded. (d is the number of users who own

a same file.)

• More detail in paper.

32

Proofs of Ownership in Remote Storage
Systems

Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg

In Proc. of ACM CCS, 2011

[Slides credits in part to HHPS, CCS’11]

33

Client-Side Cross-User Deduplication

• Prior to uploading the file:

▪ The client computes a hash value (tag) over the file, and
sends it to the server.

▪ The server checks if the file already exists in its storage (via
the tag).
• If not, it uploads the file from the client.

• If yes, it does not need to upload it.

• Benefits:

▪ Saves storage space (at the server).

▪ Saves bandwidth (at both sides).

34

However, …

• Server state is a “joint resource” across different
users.

• Answer to “does-file-exist-on-server” leaks one bit of
information about other users.

▪ [HPS, IEEE Security & Privacy’10] uses this channel to leak
“interesting” information.

• Opens the door to stealing files.

▪ Hash of file serves as identifier for content

-> A File-Stealing Attack

35

A File-Stealing Attack (Back then 2011)

• Attacker obtains hash for victim’s file.

▪ More on how to do it later.

• Connects to server, tries to upload the file.

▪ Server asks for hash, attacker complies.

▪ Server skips upload, remembers that attacker owns the
file.

• Attacker asks to restore the file, downloads it from
the server.

If you can get the hash of the file,

you can get the file.

36

Getting the Hash Value

• Hash is not meant to be secret.

▪ The deduplication procedure may use a common hash
function (e.g., SHA1, MD5).

• May be used for other purposes:

▪ “Should not reveal anything about the file.”

▪ Fingerprint software/media, timestamp contributions, …
• E.g., I publish a fingerprint of my software, one user backs it up, now

everyone can get it from server.

37

Threats of Getting the Hash Value

• Malicious software.

▪ A malicious software on Bob’s machine wants to stealthily
leak all his files to Alice (attacker).

▪ Instead of sending huge files, can send the short hash
values of the files.
• Much harder to detect and prevent.

• Also true for server break-in.

▪ Dump all hashes in memory and run…

▪ Even if detected, only remedy is to turn off deduplication
for affected files (essentially forever).

38

Threats of Getting the Hash Value

• Content distribution network (CDN).

▪ Alice wants to share a huge file with her friends;

▪ Uploads file to server, sends hash to friends;

▪ Friends use backup service to download file.

• Server used as a CDN, unknowingly.

▪ Might break its cost structure.
• If it planned on serving only a few restore operations.

▪ Might break the law.
• If huge file was copyrighted.

39

Solution:
Proofs-of-Ownership (PoW)

40

A Naïve Solution

• Use application-specific hash, salt

▪ E.g., SHA(“service name” || salt || file).

▪ Other applications won’t use the same hash.

▪ Solves fingerprinting/timestamping scenarios.

• But hash is still not secret.

▪ All clients must know hash function.

• Does not address root cause of problem.

▪ Large file is still represented by a short string, if you can
get the short string then you get the file.

• Many attack scenarios remain (CDN, break-in, etc.).

41

A Better Naïve Solution

• Use a challenge-response mechanism.

▪ E.g., for every upload, server picks a random nonce, asks
client to compute SHA(nonce || file).

▪ This “proves” that client knows the file. ☺

▪ But server must retrieve the whole file from secondary
storage to check the answer.

• We want a better proof mechanism.

42

Proofs of Ownership (PoW)

• Protocol for client (prover) and server (verifier).

▪ Client has the file;

▪ Server stores only short verification information;
• Verification information computed from the file.

▪ The proof itself is bandwidth-efficient.
• Much shorter than sending the whole file.

• Adversary may have partial information about the file.

▪ E.g., its hash value, maybe more.

• Want proof to succeed only if client has the whole file.

43

Practical Considerations

• Low bandwidth.

• Very short verification information.

▪ Only a few bytes per file.

• Efficient processing by client and server.

▪ File itself may be very large, perhaps does not even fit in
main memory.

▪ Would be nice to have a streaming solution, (e.g., similar
to just computing SHA(file)).

44

Background: Merkle Hash Trees

• Committing to n values, x1,…,xn, such that
▪ The commitment is short (a single hash value);

▪ Can “open any xi” with a de-commitment message of length O(log n).

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

45

Background: Merkle Hash Trees

• The commitment is the root value v.

• To open a leaf, send the sibling path from that leaf to the root.
▪ Sibling-path of a leaf:

• The leaf together with the siblings of all the nodes in the path from the leaf
to the root.

▪ E.g., opening leaf a by providing b, v01, and v1.

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

46

Solution: First Attempt

• Proof: server asks client to present
paths to L random leaves.
▪ Very efficient.

• Adversary that knows only a p
fraction of the file, succeeds with
prob < pL.

h

h h

h h

h h h h

b b b b

h

h h

b bFile
Divide

to
blocks

The leaves of the tree

…

…

47

Problem and Solution

• Adversary that knows a large fraction of the blocks (say, 95%),
can pass the test with reasonable probability (0.9510=0.6).

• Solution: apply Merkle tree to encoded file.

• Erasure code property: knowledge of, say, 50% of the
encoding suffices to recover original file.
▪ Attacker who misses even a single block of the file, does not know >

50% of the encoding.

▪ Fails in each Merkle tree query with probability 50%.

▪ Cheating probability is 2-L. (A simple “hardness amplification” result.)

b b b b b bFile
Erasure

code

Divide
to

blocks

…

48

Efficiency?

• Computing an erasure code for a large file.
▪ No streaming solution (that we know of).

▪ Need random-access to either input or output of the encoding
procedure.

• Very expensive if file doesn’t fit in memory.
▪ Too many disk-seeks.

• Also, small space at client?

49

Construction 2: Hash & Merkle Tree
• Hashing to reduce file to a L bits buffer, then building Merkle-

tree over the buffer.

• Requirement: min-entropy of the original file should not be
reduced.
▪ Using pairwise independent hashing h: {0,1}M

→{0,1}L

• E.g., random affine mapping

• More detail in paper.

File

Reduced buffer

Merkle
Tree

Hashing

50

Efficient Enough?

• Hashing output fits in memory, and can compute it in
“streaming fashion”. ☺

• But such implementation would be prohibitively expensive for
large M, L.

▪ File size M, buffer size L, hashing takes Ω(M·L) time.

• Can we do better?

51

Construction 3: Reduce, Mix & Merkle

• Want to use a simpler length-reduction than universal
hashing.
▪ Goal: If adversary is missing even a small part of the file (after

leakage), it will miss a large fraction of the reduced-length buffer.

• Authors design an efficient ad-hoc procedure, “hope that it
works”.
▪ They prove security against a certain class of input distributions, under

a coding assumption

52

• Reducer:
▪ XOR each block to a constant number (e.g., 4) of random locations in buffer.

▪ Runs in O(M+L) time.

▪ E.g., starting from a file with only a single unknown block, we end up with a
buffer with only four unknown blocks.

File

Reducer

Reduced file

Merkle
Tree

Reduced &
mixed file

Mixer

Construction 3: Reduce, Mix & Merkle

• Add a mixing phase:
• Make several passes over the buffer, each

time XOR every block into four other
random locations in the buffer.

• Give us good diffusion if we run enough
passes, since each unknown block will
eventually “contaminate” all the blocks in
the buffer.

53

Running PoW vs. Sending the File

54

When is it Worth the Effort?

55

Conclusion

• Deduplication offers huge savings and yet might leak
information about other users.

• They put forward the notion of proof-of-ownership (PoW), by
which a client can prove to a server that it has a copy of a file
without actually sending it.
▪ This allows to defend attacks on file-deduplication systems where the

attacker obtains a “short summary” of the file and uses it to fool the
server into thinking that the attacker owns the entire file.

56

Message-Locked Encryption and Secure
Deduplication

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart

In Proc. of Eurocrypt, 2013

[Slides credits in part to BKR, EUROCRYPT’13]

57

Convergent Encryption

• CE seems to be widely used:
▪ Cloud storage, filesystems, backup, etc.

• However, …
▪ What kind of security can schemes like CE provide?

▪ Are the deployed schemes/variants secure?

• No cryptographic treatment for deduplication over encrypted
data.
▪ Syntax of such schemes?

▪ Best possible security?

▪ How to support

• Equality checking/deduplication?

• Cross-user decryption?

This paper answers these questions!

58

This Work

• Message-locked encryption (MLE)
▪ Syntax and correctness

▪ Security goals and notions

• Practical contributions
▪ Attacks and proofs for CE and variants

▪ New, faster schemes

59

Message-Locked Encryption (MLE)

• A cryptographic framework for schemes which achieve
deduplication over ciphertexts.

• MLE scheme: M = (P, K, E, D, T)
▪ D and T are deterministic;

▪ P, E, K can be randomized or deterministic

• If K and E are deterministic, we say MLE is deterministic.

• Key used for encryption is derived from the message itself.

K

E Dm

k

c m

T tP p
Public
parameter

Tag

So named because the message
is locked under itself.

60

CE as an MLE scheme

• Recipe:
▪ H: {0, 1}* → {0, 1}k: Hash function

▪ SE = (K, E, D): Encryption scheme with k-bit keys

• CE = (P, K, E, D, T)
▪ CE is captured by the syntax as the MLE scheme that lets k = H(M) and

tag T = H(C).

H

E Dm

k

c m

H tP p
Random
128-bit string

Tag

61

MLE Correctness

• Decryption correctness
▪ Any key k derived from m can decrypt any m-ciphertext c.

▪ D(k, c) = m ∀ valid message m, ∀ k ∈ [K(m)], ∀ c ∈ [E(k, m)]

• Tag correctness
▪ All ciphertexts c over message m produce the same tag t.

▪ T(c1) = T(c2) ∀m, ∀ k1, k2 ∈ [K(m)], ∀ c1 ∈ [E(k1, m)], ∀ c2 ∈ [E(k2, m)]

• Non-triviality
▪ All keys k are of the same, fixed length, and should be shorter than |m|.

▪ |K(m)| = 𝜅 ∀m, ∀ k ∈ [K(m)]

K

E

Dm k

c

m

T t

62

Privacy
• No MLE scheme can achieve semantic-security-style privacy.

• Indeed, if the target message m is drawn from a space S of
size s then an adversary, given an encryption c of m, can
recover m in O(s) trials.
▪ For each m’ ∈ S, test whether D(K(m’), c) = c’. If so, return m’.

• We therefore ask for the best possible privacy, namely
semantic security when messages are unpredictable (have
high min-entropy).
▪ Similar concept appears in [BBO, CRYPTO’07], [BBNRSSY,

ASIACRYPT’09], [BFOR, CRYPTO’08].

63

Security, Informally

• Privacy

▪ PRV-CDA (chosen-distribution attack) notion
• Encryptions of two unpredictable(high min-entropy) messages

should be indistinguishable.

▪ PRV$-CDA notion
• “$” means the encryption of an unpredictable message m must be

indistinguishable from a random string of the same length.

K

E

Dm k

c

m

T t

64

Privacy: The PRV$-CDA Notion

• No efficient adversary can distinguish encryptions of unpredictable message
from random strings.

• PRV$-CDA(A, D)

• Security: No efficient A has non-negligible advantage for any unpredictable D.
▪ Details in paper also shows PRV$-CDA implies PRV$-CDA-A (adaptive), a preferred design.

MLE scheme M = (P, E, K, D, T)

65

Deduplicability vs. Privacy

• A possible contradiction? NO!

• Data unpredictable to attacker,
not to legitimate clients.

• Large random file f:
▪ Shared among group of clients;

▪ Unknown to attacker.

• Inherent to secure deduplication
=> PRV$-CDA provides best
possible security.

Deduplication Privacy

Only when messages repeat Only when messages unpredictable

Security for predictable messages ------> DupLESS (later will be discussed)

66

Duplicate Faking Attacks

1. Attacker stores c’

2. Alice tries to store c, server already has a matching ciphertext c’

3. When Alice downloads c’, it decrypts to f’ ≠ f

Note: No unpredictability
requirement

AttackerAlice

f

c

c’

c’

c E(K(f), f)
Get c’ that not decrypt to f,

but T(c’) = T(c)

f

Server

Keep only c’, deleting c,
because T(c’) = T(c)

This is a serious concern, and not mere speculation.
They want to rule out these types of integrity violations.

67

Tag Consistency
• Tag consistency (TC) aims to provide security against duplicate

faking attacks in which a legitimate message is undetectably
replaced by a fake one.

• Notion TC asks that it be hard to create (m, c) such that T(c) =
T(E(K(m), m)), but D(K(m), c) is a string different from m.
▪ I.e., an adversary cannot make an honest client recover an incorrect

message, which is different from the one it uploaded.

68

This Work

• Message-locked encryption (MLE)
▪ Syntax and correctness

▪ Security goals and notions

• Practical contributions
▪ Attacks and proofs for CE and variants

▪ New, faster schemes

69

MLE SchemesAll MLE schemes
achieves PRV$-CDA.

TC

TC

TC

Cannot achieve TC,
e.g., C’ SE(K, M’)

70

Convergent Encryption

• CE = (P, K, E, D, T)

• Encryption in CE

• Theorem: CE is PRV$-CDA-secure in the RO model if SE is Real-or-Random
secure and key-Recovery secure.

• Theorem: CE is TC secure if H is CR secure.

H

E Hm

k

c t Tag

Recipe:
1. H: {0, 1}* → {0, 1}k: Hash function
2. SE = (K, E, D): Encryption scheme with k-bit keys

p

Collision resistance
71

Randomized CE

• One pass, randomized MLE scheme.

• Key generation and encryption:

• Theorem: RCE is PRV$-CDA-secure secure in the RO model if SE is Real-or-
Random secure and Key-Recovery secure.

• Theorem: RCE is TC secure if H are CR secure.

Recipe:
1. H1, H2: {0, 1}* → {0, 1}k:

Hash functions
2. SE = (K, E, D): Encryption

scheme with k-bit keys

H1

H2p2

k

t

m E

p1

L

c2

c1

⊕

Random key

72

Conclusion

• They formalize a new cryptographic primitive, Message-
Locked Encryption (MLE), where the key under which
encryption and decryption are performed is itself derived
from the message.
▪ MLE provides a way to achieve secure deduplication (space-efficient

secure outsourced storage), a goal currently targeted by numerous
cloud-storage providers.

• They also provide definitions both for privacy and for a form
of integrity that is called tag consistency.

• They do not focus on the server-side or client-side designs.

73

DupLESS: Server-Aided Encryption for
Deduplicated Storage

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart

In Proc. of USENIX Security, 2013

[Slides credits in part to BKR, USENIX Security’13]

74

Design Goal

1. Secure deduplication: dedup + strong security against
untrusted storage;

2. Compromise resilience: client might be compromised to
decrypt the users’ data.
▪ E.g., when all users share one secret key, all data is insecure even if

one client is compromised.

Alice

Bob

Untrusted
Storage ServercA

cB

Compromised

f

f Store c iff new

75

Attempts

• Client specific keys
▪ Cross-user deduplication cannot work.

• Network-wide key
▪ No compromise resilience.

• All data is insecure even if one client is compromised.

• Convergent encryption
▪ Support deduplication: Everyone encrypting 𝑓 gets ciphertext.

▪ Compromise resilience: No system-wide secret.

▪ However, brute-force attack exists …

76

Brute-Force Attacks in CE

• The dirty secret of convergent encryption.
▪ If m comes from S = {}, attacker can recover m from c E(H(m), m).

• BruteForceS(c): For mi ∈ S do

m’ D(H(mi), c)

If mi = m’ then return mi

▪ Attacker runs in time proportional to |S|.

▪ Security only when |S| too large to exhaust.

• However, real files are often predictable!

• Message-locked encryption:
▪ Generalizes convergent encryption;

▪ Captures properties needed for secure deduplication.

• Brute-force attacks exist for all message-locked encryption
schemes.

Unpredictable

77

Comparison

Systems

Systems
Client specific

keys
Network wide

key
Convergent
encryption

DupLESS

Deduplication
N Y Y Y

Compromise
resilience Y N Y Y

Brute-force
attack resilience Y Y N Y

DupLESS: First to achieve all three properties!

78

Key Insight: Server-aided Encryption

• F: A pseudorandom function (PRF)
▪ E.g., HMAC [SHA256].

• Deduplication:
▪ Any client encrypting f produces same c1.

▪ c2 ciphertexts cannot be deduplicated, but they are tiny.

Alice Bob

f
KA

H(f)

K

Storage Server

Key Server

f
KB

cA
1, cB

2

Store c1 iff new

cA
1, cA

2

K

H(f)

K F(KS, H(f))

cA
1
 E(K, f)

cB
2
 E(KB, K)

cA
1
 E(K, f)

cA
2
 E(KA, K)

79

Dealing With Brute-Force Attacks

• The key server becomes a single point of failure, violating our goal of
compromise resilience:

▪ An attacker can obtain hashes of files after gaining access to it, and can
recover files with brute-force attacks.

• Promising approach: obliviously evaluating f.

Alice Bob

f
KA

H(f)

K

cA
1, cB

2

cA
1
 E(K, f)

cB
2
 E(KB, K)

Storage Server

Store c iff new

Key Server

f
KB

cA
1, cA

2

K

H(f)

K F(KS, H(f))

cA
1
 E(K, f)

cA
2
 E(KA, K)

80

Oblivious PRF (OPRF) Protocol

• Verifiable OPRF: Client can verify K = F(KS, H(f))

• Security, informally:
1. F is a PRF (when not given VK);

2. Server learns nothing, client learns only K;

3. Client can detect when server does not return K.

ClientKey Server

KS

H(f)
VK
F(KS, H(f))

…

81

RSA-OPRF Protocol

• Based on RSA blind signature:
▪ The key generation Kg outputs PRF key (N, d) and verification key N.

▪ The client uses two hash functions:

• H: {0, 1}* → ZN, and G: ZN→ {0, 1}k.

Client EvC(N, M) Key server EvS(N, d)

If e ≤ N then ret ⊥

r $ ZN

h H(M)

x h·re mod N x →

 y y xd mod N

z y·r-1 mod N

If ze mod N != h then ret ⊥
Else ret G(z)

The public RSA exponent e is fixed as
part of the scheme. Key generation
algorithm with input e will output N,
d such that ed ≡ 1 mod Φ(N), where
modulus N is the product of two
distinct primes of roughly equal
length and N < e.

82

Optimized protocol

Session initialization

TLS 2way auth handshake

Session key sent over secure channel

Making a query

Client sends OPRF input

Key server performs checks, returns OPRF output

Preventing query forgery

Per session keys + sequence numbers + MAC

1 round for each query

Client-KS (Key Server) Protocol
ClientKey Server

HTTPS based protocol
TLS 2way auth handshake

+ OPRF query & response over secure channel
4 rounds for each query

Assume a CA provides the KS and
clients with verifiable TLS certificates.

Over UDP

83

Key server (KS) Performance

Operation Latency (ms)

Naive HTTPS based Query response (low load) 374 ± 34

Optimized

Initialization 278 ± 56

Query response (low load) 83 ± 16

Query response (heavy load) 118 ± 37

Ping times 78 ± 01

• KS is deployed on an Amazon EC2 m1.Large instance.

• Heavy load ≈ 3k queries per second.

84

Rate Limiting

• Goal: slow down online brute-force trails from attacker
controlled clients.

• Strategy: limit clients to q queries per epoch, where each
epoch lasts 𝜏 units of time.
▪ Setting bound q:

▪ Setting epoch duration 𝜏:

• Must handle bursty workloads;

• Systems exhibit periodic patterns, e.g., 1 week.

▪ When they exceed their budgets (q queries), we can build clients to
simply continue with randomized encryption.

• Thereby alleviating KS availability issues for a conservative choice of q.

• Rate limiting can slow down brute-force attacks by 4000x.

Too low
Normal usage affected

Too high
Attacks not slowed down

85

DupLESS System Design

Client Storage Server (SS)

Client
Module

KeyServer
Module

Key Server (KS)

Rate limiting

Implement API over encrypted data:
• Encrypt and decrypt files;
• Handle file names and paths;
• Run transparently:

✓ Low overhead;
✓ Works when KS is down;
✓ No client-side state.

Simple file system API:
put, get, list, delete,
search, mkdir, move

DupLESS

86

Put Query in DupLESS

Client Storage Server (SS)

Client
Module

KeyServer
Module

Key Server (KS)

put(p, f, m):
1. Derive key K for m from KS;
2. cp DAE(KA, p), cf DAE(KA, f);
3. If not canDedup(p, f, m), then pick K at random;
4. c1

 E(K, m), c2
 E(KA, K);

5. SSput(cp , cf||0, c1), SSput(cp , cf||1, c2).

Deterministic authenticated
encryption [Rogaway et al.
EUROCRYPT’06]

DupLESS
p: path
f: file name
m: contents

K, cp , cf , c1, c2

p/f: m

cp/cf||0: c1

cp/cf||1 : c2

Dedup heuristics, e.g., file
length

87

Performance: Latency

• DupLESS client:

▪ Written in Python, command-line interface;

▪ Dropbox and Google Drive can work as storage service.

Put

Get

88

Conclusion

• DupLESS: encrypted deduplication with the aid of a key server.
▪ First solution to provide secure deduplication + compromise resilience.

▪ Can be deployed transparently over existing systems:

• Implementations over Dropbox, Google Drive.

▪ Nominal performance overhead over plaintext deduplication.

▪ Storage saving match plaintext deduplication.

• Code available at:
▪ http://cseweb.ucsd.edu/~skeelvee/dupless/

90

http://cseweb.ucsd.edu/~skeelvee/dupless/

Secure Deduplication of Encrypted Data
without Additional Independent Servers

Jian Liu, N. Asokan, and Benny Pinkas

In Proc. of ACM CCS, 2015

91

Target Problem

• Deduplication for predictable data needs a key server.
▪ E.g., DupLESS.

• The authors want to avoid additional server by using a
cryptographic primitive known as Password Authenticated
Key Exchange (PAKE)*, which allows two parties to agree on a
session key iff they share a short secret (i.e., “password”).
▪ The scheme allows a client uploading an existing file to securely obtain

the encryption key that was used by the client who has previously
uploaded that file.

• This key is chosen randomly by the initial uploader.

*S. M. Bellovin and M. Merritt. “Encrypted key exchange: password-based protocols secure against dictionary attacks.” In IEEE
Computer Society Symposium on Research in Security and Privacy, pages 72–84, 1992.

92

Design Overview

• Directly uploading a file hash to locate duplicate is insecure.
▪ Because a compromised server can easily mount an offline brute-

force attack on the hash h if F is predictable.

• The proposed design overview:
▪ A client uploading a file first sends a short hash of this file (10-20 bits

long) to the server.

• Using short hash, which is high collision rate and short output.

• Due to the high collision rate of short hash, server cannot use it to
reliably guess the content of F offline.

▪ The server identifies other clients whose files have the same short
hash, and let them run a single round PAKE protocol (routed through
the server) with the uploader using the (long, but possibly low
entropy) hashes of their files as the “passwords”.

▪ Finally, the uploader gets the key of another client iff their files are
identical. Otherwise, it gets a random key.

93

Preliminaries

• Password authenticated key exchange (PAKE), which allows two
parties to agree on a session key iff they share a short secret (i.e.,
password).

• Short hash, which is high collision rate and short output.

• Additively homomorphic encryption, Dec(sk, Enc(pk, a)+Enc(pk, b))
= a+b.

• Randomized threshold, for each file, the server set a random
threshold t to decide whether dedup or not.

• Rate limiting, limiting the number of PAKE runs for each file on
both the uploader and the checkers, so as to prevent from the
online brute-force attack by a compromised active server.

94

Threat Model

• Possible attacks:

▪ Online brute-force attack by a compromised active
uploader;
• To try if some content has been uploaded before by uploading an

interest file.

▪ Offline brute-force attack by a compromised passive S;
• To try if some ciphertext is a known content by using a dictionary

attack.

▪ Online brute-force attack by a compromised active S.

• The S masquerades the client to guess the existence.

95

PAKE Construction

• KA == KB, iff pwA == pwB.

96

System Model

• General setting:
▪ Storage server;

▪ Multiple clients.

• Clients never communicate directly, but exchange messages with the
server who processes the messages and/or forwards them as needed.

• Participants in a deduplication system:
▪ Storage server;

▪ Uploader, who attempts to upload a file;

▪ Existing clients {Ci}, who have already uploaded a file.

No additional key server!

97

Naïve Construction

• A naïve construction utilizing the PAKE protocol:
▪ After running the PAKE protocol, Ci derives a key ki and the uploader C

derives a key k.

▪ Ci sends E(ki,fk) to C, where the C can decrypt it iff they share the
same secret.

• Privacy leakage:
▪ The uploader C is able to figure out what files are stored in cloud.

• By checking whether the file has been uploaded before.

• A better construction requires that:
▪ The uploader C cannot know whether the file has been uploaded

before.

98

Proposed Construction (Server-side Dedup)

1. Server find the checkers
who have uploaded files
with the same short hash sh.
2. Randomly choose a set of
checkers {Ci}.

3. The subsequent uploader runs PAKE protocol with selected clients. (Note
that the messages are relayed by the server.)
4. After the invocation of the PAKE protocol, each Ci gets a session key ki, while
C gets a set of session keys {ki’}.

Initial Uploader

Subsequent Uploader

A randomly selected file key.

{sh, Enc(kFi, Fi)}

ShortHash(F)→ sh

99

Proposed Construction (Server-side Dedup)

{kiL, (kiR + kFi)}
pk, kiL’,

HE.Enc(pk, kiR + r)

ki split into kiL||kiR

kiR + kFi

ki’ split into kiL’||kiR’
HE.Enc(pk, kiR’ + r), where r is a
random element chosen by C

Initial Uploader
Subsequent Uploader

100

1. The server checks if there is an index such that kjL = kjL’
2. If so, the server computes

e = HE.Enc(pk, kjR + kFj) *HE.Enc(pk, (-1)(kjR’ + r))
= HE.Enc(pk, kFi - r)

Proposed Construction (Server-side Dedup)

k1L, k1R + kF1

k2L, k2R + kF2

….
knL, knR + kFn

k1L’, HE.Enc(pk, k1R’ + r)
k2L’, HE.Enc(pk, k2R’ + r)
….
knL’, HE.Enc(pk, knR’ + r)

1. kF = HE.Dec(sk, e) + r

2. Enc(kF, F)
Enc(kF, F)

e

Subsequent Uploader

101

Rate Limiting

• A compromised active server can apply online brute-force
attacks against C or Ci by pretending to be an uploader.

• A per-file rate limiting strategy can both improve security
and reduce overhead (namely the number of PAKE runs)
without damaging the deduplication effectiveness.

102

Support Secure Client-side Dedup

• Their above design is for server-side deduplication.

• To save bandwidth, we transform it to support client-side dedup.
▪ However, online brute-force attacks by compromised uploader should be

considered.

• For a predictable file, an uploader can construct all candidate files, upload
them and observe which one causes deduplication.

• Using randomized threshold approach:
▪ For each file, the server set a random threshold tF (>=2) and a counter c

that indicates the number of Cs that have previously uploaded this file;

▪ In the case of a match between the messages submitted by the uploader
and the checkers, if c < t, the server tells the uploader to upload the
encrypted file. Otherwise, the server informs the uploader that there is
duplicate and the upload is saved.

▪ In the case of a no match, the server asks the uploader to upload the
encrypted file.

Recall [HPS, IEEE Security & Privacy’10]

104

Security Analysis

• Due to the high collision of short hash, the server is not able
to guess the file reliably.
▪ Offline brute-force attacks by compromised server are prevented.

• In the setting of client-side dedup, the random threshold
method is adopted
▪ Online brute-force attacks by compromised uploader is prevented.

• Per-file rate limiting is enforced. Both the uploaders and the
checkers should limit the number of PAKE run for each file in
their respective roles.
▪ Online brute-force attacks by compromised active server is prevented.

105

Conclusion

• They designed a PAKE-based protocol that enables two parties
to privately compare secrets and share the encryption key.

• Based on this protocol, they developed the first secure cross-
user deduplication scheme that supports client-side
encryption without requiring any additional independent
servers.
▪ Recall that DupLESS has such additional key server.

106

BL-MLE: Block-Level Message-Locked Encryption for
Secure Large File Deduplication

Rongmao Chen, Yi Mu, Guomin Yang, and Fuchun Guo

In IEEE TIFS, 2015

107

Target Problem

• Although an MLE scheme can be extended to obtain secure
deduplication for large files, it requires a lot of metadata
maintained by the end user and the cloud server.

• For large file deduplication:
▪ Normally block-level deduplication can provide more space savings

than file-level deduplication does in large file storage.

Cannot dedupLarge file f

A few difference

108

Dual-Level Source-Based (DLSB)
Deduplication

• The user firstly sends a file identifier to the server for file
redundancy checking.
▪ To perform file-level deduplication firstly.

• If the file to-be-stored is duplicated in the server, the user
should convince the server that he/she indeed owns the file
by performing a PoW protocol.
▪ PoW should be implemented along with source-based deduplication.

• Otherwise, the user uploads the identifiers/tag of all the file
blocks to the server for block-level deduplication checking.

• Finally, the user uploads data blocks which are not stored in
the server.

109

Using MLE for Block-Level Deduplication

• Metadata I (Block identifiers):
▪ In addition to the file identifier, the server also has to store a large

number of block identifiers for redundancy checking.

▪ Stored in the primary memory for fast access upon upload request.

• Metadata II (Block keys):
▪ Each file block should be encrypted using a block key which is derived

from the data block itself.

▪ Using a master key to encrypt them? --> extra space cost

• Metadata III (PoW tags):
▪ As the actual data blocks are stored in the secondary storage, it is

more practical to use some short PoW tags to perform the
verification.

110

Reduce Metadata?

• The metadata size: (n is the number of blocks)
▪ O(|file tag|, n*|block tag|, n * |block key|, |PoW tag|).

• Among all the metadata, the block identifiers and
the encrypted block keys form the major storage
overhead.

▪ Linear to the number of blocks.

▪ This motivated us to design a new scheme that can
combine the block identifier and the encrypted block key
into one single element.

111

Block-Level Message-Locked Encryption
(BL-MLE)

• Using Symmetric Bilinear Map as fundamental primitive.

• Consists of the following algorithms:
▪ Setup

▪ KeyGen (M-KeyGen, B-KeyGen)

▪ Enc

▪ Dec

▪ TagGen (M-TagGen, B-TagGen)

▪ ConTest

▪ EqTest

▪ B-KeyRet

▪ PoWPrf

▪ PoWVer
for PoW protocol

to prevent duplicate faking attack

For block key retrieval as
the block tag also serves
as an encrypted block key.

112

Setup(1λ)

• Generates a prime p, the descriptions of two groups G, GT of
order p, a generator g of G and a bilinear map e: G × G → GT .

• Choose an integer s ∈ N and three hash function:
▪ H1 : {0, 1}* → Zp,

▪ H2 : {Zp}s → G,

▪ H3 : G → {Zp}s.

• Pick s elements randomly u1, u2,..., us ←R G.

• The system parameters are:
▪ P = < p, g, G, GT, e, H1, H2, H3, s, u1, u2,..., us >.

113

KeyGen(M)

• M = M[1]||…||M[n].
▪ The message will be separated into multiple blocks.

• M-KeyGen(M): kmas = H1(M)
▪ The master key is based on the entire message.

• B-KeyGen(M[i]): ki = H2(M[i])
▪ The block key is derived from each block.

• H1(): {0, 1}* → Zp

• H2(): {Zp}s → G

114

Enc(ki, M[i]) & Dec(ki, C[i])

• C[i] = H3(ki) XOR M[i]

• M[i] = H3(ki) XOR C[i]
▪ If ki = H2(M[i]), accept the result;

▪ Otherwise, output NULL.

• H3(): G → {Zp}s

Encryption

Decryption

115

TagGen(M)

• M = M[1]||…||M[n].

• M-TagGen(M):
▪ kmas = M-KeyGen(M)

▪ T0 = gkmas

• B-TagGen(M, i):
▪ ki = B-KeyGen(M[i])

▪ C[i] = Enc(ki, M[i])

▪ Split C[i] into s sectors: Ti = (ki ∙ ∏s
j=1 uj

C[i][j])kmas

▪ AUXi = e(ki, T0)

• u1, u2, …, us ←R G

File tag

Block tag

Attached to the block tag Ti,
which is used for the
consistency checking, and
no need to stored.

To shorten the size of the
block tag, the block ciphertext
is split into s sectors. Each
sector is one element of Zp,
and hence the size of a block
tag is just 1/s of the
corresponding block
ciphertext.

116

ConTest(Ti, C[i])

• They require that the block tag construction should achieve
strong tag consistency.

• Given C[i] and block tag Ti with auxiliary data AUXi:
▪ Split C[i] into s sectors: C[i][1], …, C[i][s]

▪ Check e(Ti, g) ?= AUXi ∙ e(∏s
j=1 uj

C[i][j], T0)

▪ Output 1 or 0.

▪ e((ki ∙ ∏s
j=1 uj

C[i][j])kmas, g) ?= e(ki, gkmas) ∙ e(∏s
j=1 uj

C[i][j], gkmas)

• Once the server has checked that C[i] and Ti are consistent,
AUXi can be discarded.

117

EqTest(Ti, Ti’, T0, T0’)

• Check e(Ti, T0’) ?= e(Ti’, T0).

• Output 1 or 0.

• e((ki ∙ ∏s
j=1 uj

C[i][j])kmas, gkmas’) ? = e((ki’ ∙ ∏s
j=1 uj

C[i][j])kmas’, gkmas)

• kmas != kmas’, due to H1(M) may not equal H1(M’), but if the
blocks are identical, this equation can still be satisfied.

Key idea!

118

B-KeyRet(kmas, Ti, C[i])

▪ Split C[i] into s sectors: C[i][1], …, C[i][s]

• ki = Tikmas ∙ (∏s
j=1 uj

C[i][j])kmas)-1

▪ ki = (ki ∙ ∏s
j=1 uj

C[i][j])kmas ∙ (∏s
j=1 uj

C[i][j])kmas)-1

Block key

Before decrypt the block ciphertext, the
user should retrieve the key first.

119

PoW in Brief

1. The server generates a challenge query Q = {(i, vi)}:
▪ The “i” is the position of a queried block, vi ←R Zp.

2. The client compute Ti as a proof based on specific C[i]:
▪ PT = ∏(i, vi) Tivi ← PoWPrf(M, Q).

3. The server computes VT = ∏(i, vi) Tivi ← PoWVer(PT, {Ti}i<i<n, Q).
▪ Check PT ?= VT.

▪ Output 1 or 0.

120

Performance

121

Conclusion

• BL-MLE is a newly developed cryptographic primitive for dual-
level source-based deduplication of large files to achieve
space-efficient storage.
▪ To avoid extra storage for the block keys at either the cloud side or

the user side, BL-MLE encapsulates the block keys into the block tags,
and later the party holding a master key is able to recover the block
keys from the block tags.

▪ Therefore, to store a file, the metadata of each block ciphertext for
supporting block-level deduplication is just one block tag.

122

To Learn More

• John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. “Reclaiming Space
from Duplicate Files in a Serverless Distributed File System.” In Proc. of IEEE ICDCS, 2002.

• Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. “Side channels in cloud services:
Deduplication in cloud storage.” In IEEE Security & Privacy, 2010, Nov. 8(6):40-7.

• Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. “Proofs of Ownership in
Remote Storage Systems.” In Proc. of ACM CCS, 2011.

• Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. “Message-locked encryption and secure
deduplication.” In Proc. of EUROCRYPT, 2013.

• Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. “DupLESS: Server-Aided Encryption for
Deduplicated Storage.” In Proc. of USENIX Security, 2013.

• Jia Xu, Ee-Chien Chang, and Jianying Zhou. “Weak leakage-resilient client-side deduplication of
encrypted data in cloud storage.” In Proc. of ACM ASIACCS, 2013.

• Jan Stanek, Alessandro Sorniotti, Elli Androulaki, and Lukas Kencl. “A Secure Data Deduplication
Scheme for Cloud Storage.” In Proc. of FC, 2014.

• Jian Liu, N. Asokan, and Benny Pinkas. “Secure Deduplication of Encrypted Data without Additional
Independent Servers.” In Proc. of ACM CCS, 2015.

• Rongmao Chen, Yi Mu, Guomin Yang, and Fuchun Guo. “BL-MLE: Block-Level Message-Locked
Encryption for Secure Large File Deduplication.” In IEEE TIFS, 2015.

• Yifeng Zheng, Xingliang Yuan, Xinyu Wang, Jinghua Jiang, Cong Wang, and Xiaolin Gui. “Enabling
Encrypted Cloud Media Center with Secure Deduplication.” In Proc. of ACM AsiaCCS, 2015.

123

To Learn Even More

• Tao Jiang, Xiaofeng Chen, Qianhong Wu, Jianfeng Ma, Willy Susilo, and Wenjing Lou. “Secure
and Efficient Cloud Data Deduplication With Randomized Tag”, In IEEE TIFS, 2017.

• Mihir Bellare, Sriram Keelveedhi, “Interactive message-locked encryption and secure
deduplication”, In Proc. of PKC, 2015.

• Frederik Armknecht, Jens-Matthias Bohli, Ghassan O. Karame, and Franck Youssef.
“Transparent Data Deduplication in the Cloud.” In Proc. of ACM CCS, 2015.

• Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick PC Lee, and Wenjing Lou. “Secure
deduplication with efficient and reliable convergent key management.” IEEE Trans. on
Parallel and Distributed Systems (TPDS), 2014.

• Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick PC Lee, and Wenjing Lou. “A hybrid cloud approach for
secure authorized deduplication.” IEEE Trans. on Parallel and Distributed Systems (TPDS),
2015.

• Yukun Zhou, Dan Feng, Wen Xia, Min Fu, Fangting Huang, Yucheng Zhang, and Chunguang Li,
“SecDep: A User-Aware Efficient Fine-Grained Secure Deduplication Scheme with Multi-Level
Key Management.” In Proc. IEEE MSST, 2015.

• Jin Li, Xiaofeng Chen, Xinyi Huang, Shaohua Tang, Yang Xiang, Mohammad Mehedi Hassan,
and Abdulhameed Alelaiwi, “Secure Distributed Deduplication Systems with Improved
Reliability.” IEEE Trans. on Computers (TC), 2015.

• …

124

Thanks.

125

