
U10M12004-OOP

Object Oriented
Programming

Chapter 1
Introduction

Dr. Helei Cui

25 Feb 2025

Slides partially adapted from lecture
notes by Cay Horstmann

U10M12004-OOP

Introduction to this course

Dr. Helei Cui 2

U10M12004-OOP

About this course

• Course code: U10M12004

• Course title: Object Oriented Programming

• Hours and credits: 40 hours/2.5 credits

• Prerequisite courses: C Programming Language

• Course offered by: School of Computer Science

• Starting semester: Spring

• Course category: Discipline Elementary Course

• Schedule: 19:00-20:40, Tuesday & Thursday, Week 2-11
• 10 minutes break at 19:45

• Course webpage:

• https://harrycui.github.io/courses/oop-cs-2025.html

Dr. Helei Cui 3

https://harrycui.github.io/courses/oop-cs-2025.html

U10M12004-OOP

Teaching group

• Instructors:
• Chapter 1~4: Dr. Helei Cui 崔禾磊

• Chapter 5~9: Dr. Muhammad Umar Farooq Qaisar

• Lab session: Dr. Yaxing Chen 陈亚兴

• Teaching assistant:
• Mr. Hao Zeng 曾豪 (PhD student)

Dr. Helei Cui 4

Muhammad Umar
Farooq Qaisar

muhammad@nwpu.edu.cn

Yaxing Chen
yxchen@nwpu.edu.cn

Hao Zeng
hao_zeng@mail.nwpu.edu.cn

U10M12004-OOP

About me

• Dr. Helei Cui（崔禾磊）
• Professor in CS

• PhD @ City University of Hong Kong

• MSc @ The Chinese University of Hong Kong

• BEng @ Northwestern Polytechnical University

• Research Interests
• Trustworthy Crowd Computing

• Privacy-Preserving Computing

• Edge Intelligence

• Decentralized Cloud Storage

• …

• More details @ https://harrycui.github.io/

Dr. Helei Cui 5

https://harrycui.github.io/

U10M12004-OOP

Quick question 1

Which programming language have you learned before?

A. C/C++

B. Java

C. Python, Go, Swift, etc.

D. None

Dr. Helei Cui 6

U10M12004-OOP

Textbooks

• Textbook:
• Cay Horstmann, Core Java Volume I

- Fundamentals 11th Edition,
Pearson, 2018.

• Reference books:
• Grady Booch, James Rumbaugh,

and Ivar Jacobson, The Unified
Modeling Language User Guide
2nd Edition, Addison-Wesley
Professional, 2017.

• Joshua Bloch, Effective Java 3rd
Edition, Addison-Wesley
Professional, 2017.

Dr. Helei Cui 7

U10M12004-OOP

Tools

• Hardware:
• PC (Windows or Linux)

• Mac (macOS)

• Software:
• Eclipse IDE

• Notepad

• Sublime

• VS Code

• …

Dr. Helei Cui 8

U10M12004-OOP

Assessment (tentative)

• Attendance (10%)
• Randomly check

• Midterm Quiz (20%)
• Multiple choice questions and others

• Assignment (20%)
• Two tasks, covering UML design and programming

• Final Exam (50%)
• No less than 60 grades

Dr. Helei Cui 9

U10M12004-OOP

Chapters

1. Introduction (4 hours)

2. The Java Programming Environment (2 hours)

3. Fundamental Programming Structures in Java (8 hours)

4. Object and Classes (6 hours)

5. Inheritance (6 hours)

6. Interfaces, Lambda Expressions, and Inner Classes (5 hours)

7. Exceptions (3 hours)

8. Collections (4 hours)

9. I/O (2 hours)

Dr. Helei Cui 10

U10M12004-OOP

Intended learning outcomes

1. Learn Java programming language, including types,
operators, program control, and several useful classes.

2. Develop problem-solving skills through practice and
understanding of the divide-and-conquer and top-down
approaches.

3. Learn the principles of OOP in Java with the usage of
classes, inheritance, polymorphism, interfaces, containers,
and with the goal of understanding code reuse and
building scalable programs.

4. Use UML tools to visualize a system design.

Dr. Helei Cui 11

U10M12004-OOP

Suggestions

• Coding style is extremely important.

• Try to code it by yourself.

• Google is your “best” teacher.

• Enjoy coding.

Dr. Helei Cui 12

U10M12004-OOP

A first look at Object Oriented
Programming (OOP)

Dr. Helei Cui 13

U10M12004-OOP

What is OOP?

• OOP allows programmers to think of software development
as if they are working with real-life entities.
• In your everyday life, people have the knowledge and can-do

various works/tasks.

• In OOP, objects have fields to store knowledge/state/data and can-
do various methods.

• OOP is a programming paradigm based on the concept of
"objects", which can contain data and code:
• data, in the form of fields (a.k.a. attributes or properties);

• code, in the form of procedures (a.k.a. methods).

Dr. Helei Cui 14

OOP helps programmers create complex programs by
grouping together related data and methods.

U10M12004-OOP

Some basic terminologies

• Object
• Objects are instances of a class.

• Class
• Classes are templates for objects.

• Method
• Can modify a class state that would apply across all the instances of

the class.

• Instance
• Recall that “An object is an instance of a class”.
• Let’s think about it in these terms:

• A blueprint for a car design is the class description, all the cars
manufactured from that blueprint are objects of that class.

• Your car that has been made from that blueprint is an instance of that
class.

Dr. Helei Cui 15

U10M12004-OOP

Four main principles

1. Encapsulation

2. Abstraction

3. Inheritance

4. Polymorphism

Dr. Helei Cui 16

U10M12004-OOP

Encapsulation

• Bundles data with methods that can operate on
that data within a class.
• Essentially, it is the idea of hiding data within a class,

preventing anything outside that class from directly
interacting with it.

Dr. Helei Cui 17

Keeps the programmer in control of access to data and prevents
the program from ending up in any strange or unwanted states.

U10M12004-OOP

Abstraction

• Only shows essential details and keeps everything
else hidden.

• Users of your classes should not worry about the inner
details of those classes.

• The interface is exposed for communication, while the
implementation should be hidden.

Dr. Helei Cui 18

Car
Important to driver

1. How the steering
wheel steers the car?

2. How much gas your
car has?

Not important to driver
1. How the gas reacts to the

engine?
2. How the engine makes

your car move?

Abstraction allows the program to be worked on incrementally
and prevents it from becoming entangled and complex.

U10M12004-OOP

Inheritance

• Allows classes to derive from other classes.

Dr. Helei Cui 19

Car

SUV Sportscar

With inheritance, reusability is a major advantage. You can
reuse the fields and methods of the existing class.

U10M12004-OOP

Polymorphism

• Describes methods that can take on many forms.

Dr. Helei Cui 20

• Dynamic polymorphism: (a.k.a.
method overriding)
• Occurs during the runtime of

the program.

• The methods share the same
name but have different
implementation.

• The implementation of the
subclass that the object is an
instance of overrides that of the
superclass.

parent class

subclass

overridden
method

overriding
method

U10M12004-OOP

Polymorphism

• Static polymorphism: (aka method overloading)
• Occurs during the compile-time.

• Multiple methods with the same name but different
arguments are defined in the same class.

Dr. Helei Cui 21

Be sure that you are calling the correct form of the method.

Ways to differentiate methods
of the same name:
myCar.drive(45, “NPU”);
myCar.drive(45, 100);
myCar.drive(“Home”, 50);

U10M12004-OOP

Object-oriented vs Procedural

Dr. Helei Cui 22

Paradigm Description Pros Cons Examples

Object-
oriented

Treats data fields as
objects manipulated
through predefined
methods only

1. Much easier to scale for
future needs and
development.

2. Good for larger more
complex applications.

3. More dynamic and fluid in
terms of the architecture
and overall design.

4. Maintainable.

1. Can easily become very
complicated in terms of
design and architecture.

2. Takes much longer to
develop initially.

3. More difficult to learn
than Procedural.

Java, C++,
Kotlin, Go,
Python, etc.

Procedural Derived from
structured
programming,
based on the
concept of modular
programming or the
procedure call

1. Quick to develop and
implement.

2. Easy to learn.
3. Simple architecture and

overall structure.
4. Good for quick and simple

applications.

1. Difficult to scale for future
needs.

2. Usually is very flat in
terms of design and
structure.

3. Not good for larger
applications that will likely
change over time.

4. Maintaining can be very
challenging.

C, C++, PHP,
Python, etc.

U10M12004-OOP

Understand the design decisions
that shaped Java

Dr. Helei Cui 23

U10M12004-OOP

What is Java?

Dr. Helei Cui 24

https://go.java/?intcmp=gojava-banner-java-com

• Java is a class-based, object-oriented programming language that is
designed to have as few implementation dependencies as possible.

• It is intended to let application developers write once, run anywhere
(WORA), meaning that compiled Java code can run on all platforms that
support Java without the need for recompilation.

U10M12004-OOP

Java is Popular

Dr. Helei Cui 25

https://go.java/?intcmp=gojava-banner-java-com

U10M12004-OOP

A short video (2 min)

Dr. Helei Cui 26

U10M12004-OOP

The “White Paper” buzzwords

1. Simple

2. Object-Oriented (OO)

3. Distributed

4. Robust

5. Secure

6. Architecture-Neutral

7. Portable

8. Interpreted

9. High-Performance

10. Multithreaded

11. Dynamic

Dr. Helei Cui 27

The authors of Java wrote an
influential white paper that
explains their design goals
and accomplishments.

U10M12004-OOP

“Simple”

• Java has an English-like syntax, which makes it the perfect
language for beginners.
• Compared with C++, the syntax of Java is much easier and more

comprehensible.

• There is no need for header files, pointer, structures, etc.

• Java is relatively small.
• Initially designed for small machines;

• The size of the basic interpreter and class support is about 40KB;

• The basic standard libraries and thread support add another 175KB.

Dr. Helei Cui 28

U10M12004-OOP

“Object-Oriented”

• Simply stated, object-oriented design is a programming
technique that focuses on the data-objects-and on the
interfaces to those objects.

• Object orientation was pretty well established when Java
was developed.

• The object-oriented features of Java are comparable to
those of C++.
• The major difference between Java and C++ lies in multiple

inheritance, which Java has replaced with a simpler concept of
interfaces.

Dr. Helei Cui 29

U10M12004-OOP

“Distributed”

• Java has an extensive library of routines for coping with
TCP/IP protocols like HTTP and FTP.
• Java applications can open and access objects across the Net via

URLs with the same ease as when accessing a local file system.

Dr. Helei Cui 30

U10M12004-OOP

“Robust”

• Java is intended for writing programs that must be reliable
in a variety of ways.
• Java detects many problems that in other languages would show up

only at runtime.

• Java puts a lot of emphasis on early checking for possible problems,
later dynamic (runtime) checking, and eliminating situations that
are error-prone. . . .

• The single biggest difference between Java and C/C++ is:
• Java has a pointer model that eliminates the possibility of

overwriting memory and corrupting data.

Dr. Helei Cui 31

U10M12004-OOP

“Secure”

• Java was designed to make some kinds of attacks impossible:
• Overrunning the runtime stack - a common attack of worms/viruses

• Corrupting memory outside its own process space

• Reading or writing files without permission

• The Java security model is based on a customizable
“sandbox” in which Java programs can run safely, without
potential risk to systems or users.
• Nothing bad could happen because Java code, no matter where it

came from, could never escape from the sandbox.

Dr. Helei Cui 32

U10M12004-OOP

“Architecture-Neutral”

• The compiler generates an architecture-neutral object file
format.
• The Java compiler does this by generating bytecode instructions

which have nothing to do with a particular computer architecture.

• Rather, they are designed to be both easy to interpret on any
machine and easy to translate into native machine code on the fly.

Dr. Helei Cui 33

U10M12004-OOP

Quick question 2

Which OS are you using?

A. Windows

B. macOS

C. Linux

D. Other

Dr. Helei Cui 34

U10M12004-OOP

“Portable”

• Unlike C and C++, there are no “implementation-dependent”
aspects of the specification. The sizes of the primitive data
types are specified, as is the behavior of arithmetic on them.

• For example, an int in Java is always a 32-bit integer. In C/C++, int
can mean a 16-bit integer, a 32-bit integer, or any other size that the
compiler vendor likes. The only restriction is that the int type must
have at least as many bytes as a short int and cannot have
more bytes than a long int.

• Having a fixed size for number types eliminates a major porting
headache. Binary data is stored and transmitted in a fixed format,
eliminating confusion about byte ordering. Strings are saved in a
standard Unicode format.

Dr. Helei Cui 35

U10M12004-OOP

“Interpreted”

• The Java interpreter can execute Java bytecodes directly on
any machine to which the interpreter has been ported.

• Since linking is a more incremental and lightweight process,
the development process can be much more rapid and
exploratory.

Dr. Helei Cui 36

U10M12004-OOP

Compiling vs Interpreting (6 min)

Dr. Helei Cui 37

https://www.youtube.com/watch?v=JNMy969SjyU

U10M12004-OOP

“High-Performance”

• While the performance of interpreted bytecodes is usually more than
adequate, there are situations where higher performance is required.
The bytecodes can be translated on the fly (at runtime) into machine
code for the particular CPU the application is running on.

• Today, however, the just-in-time compilers have become so good that
they are competitive with traditional compilers and, in some cases, even
outperform them because they have more information available.
• For example, a just-in-time compiler can monitor which code is executed

frequently and optimize just that code for speed.

Dr. Helei Cui 38

U10M12004-OOP

“Multithreaded”

• A thread is an independent path of execution
within a program, executing concurrently.

• Multithreaded means handling multiple tasks
simultaneously or executing multiple portions
(functions) of the same program in parallel.

• The code of java is divided into smaller parts
and Java executes them in a sequential and
timely manner.

• Advantages:
• Maximizing utilization of resources.
• Doesn’t occupy memory for each thread. It shares

a common memory area.

• No need to wait for the application to finish one
task before beginning another one.

• Decreased cost of maintenance and time-saving.
• Improves the performance of complex

applications.

Dr. Helei Cui 39

U10M12004-OOP

“Multithreaded”

• Java was well ahead of its time. It was the first mainstream
language to support concurrent programming.
• At the time, multicore processors were not widely deployed, but

web programming had just started, and processors spent a lot of
time waiting for a response from the server. Concurrent
programming was needed to ensure the user interface didn’t freeze.

• Concurrent programming is never easy, but Java has done a very
good job making it manageable.

Dr. Helei Cui 40

U10M12004-OOP

“Dynamic (and Extensible)”

• With the help of OOPs, we can add classes and add new
methods to classes, creating new classes through subclasses.
• This makes it easier for us to expand our own classes and even

modify them.

• Java gives the facility of dynamically linking new class
libraries, methods, and objects.
• It is highly dynamic as it can adapt to its evolving environment.

• Java even supports functions written in other languages
such as C and C++ to be written in Java programs.
• These functions are called “native methods”. These methods are

dynamically linked at runtime.

Dr. Helei Cui 41

U10M12004-OOP

Why is Java popular?

1. Java is user-friendly
• English-like syntax

2. Java for everything
• Can be used for developing Web apps, Android apps, etc.

• Can be used in Data Science applications, Machine Learning
applications, and even IoT.

3. Java has rich API

4. A robust community backs Java

5. Java has excellent documentation

6. Java has a suite of powerful development tools

Dr. Helei Cui 42

U10M12004-OOP

Become familiar with the history of
Java

Dr. Helei Cui 43

U10M12004-OOP

Before Java 1.0

• 1991
• James Gosling worked on “Project Green”, a system for consumer

devices.
• He designed a programming language, originally called “Oak”.
• That name was trademarked, so it was renamed to “Java”.

• 1992
• The first project was released, a TV switchbox called “*7”.
• Nobody cared, and the project was renamed “First Person, Inc.”

• 1994
• Still, nobody cared, and Gosling realized that they could build a “really

cool browser…architecture-neutral, real-time, reliable, secure.”

• 1995
• The HotJava browser was released.

• 1996
• Java 1.0 was released!

Dr. Helei Cui 44

U10M12004-OOP

History of Java (2 min)

Dr. Helei Cui 45

https://www.youtube.com/watch?v=DcQPtlFlgzY&t=72s

U10M12004-OOP

Java versions

Dr. Helei Cui 46

JDK 1.0
Very first version
was released on
23 Jan 1996. The
principal stable
variant, JDK 1.0.2,
is called Java 1.
JDK 1.1 was
released on 19
Feb 1997.

1996

J2SE 1.2
“Playground” was
the codename
which was given
to this form and
was released on
8 Dec 1998. Its
real expansion
included: strictfp
keyword, the
Swing graphical
API.

1998

J2SE 1.3
Was given a
codename
“Kestrel” and was
released date 8
May 2000 and
contains additions
like HotSpot, JVM
included, Java
Naming and
Directory
Interface.

2000

J2SE 1.4
Was given the
codename “Merlin”
and was released
on date 6 Feb 2002
and contains
additions like
Library
improvements,
Regular
expressions
modelled after Perl
regular expressions.

2002

U10M12004-OOP

Java versions

Dr. Helei Cui 47

J2SE 5.0
Was given the
codename “Tiger”
and was released
on 30 Sep 2004
originally
numbered as 1.5
which is still used
as its internal
version. Added
several new
language features
such as for-each
loop.

2004

Java SE 6
Was given the
codename
“Mustang” and
was released on
date 11 Dec 2006.
Packaged with a
database
supervisor and
encourages the
utilization of
scripting.

2006

Java SE 7
Was given the
codename
“Dolphin” and was
released on date 7
Jul 2011. Added
small language
changes including
strings in switch.
The JVM was
extended with
support for
dynamic languages.

2011

Java SE 8 (LTS)
Was released on
date 18 Mar
2014. Language
level support for
lambda
expressions and
default methods
and a new date
and time API
inspired by Joda
Time.

2014

Long-term support

U10M12004-OOP

Java versions

Dr. Helei Cui 48

Java SE 9
Was released on
21 Sep 2017.
Project Jigsaw:
designing and
implementing a
standard, module
system for the Java
SE platform, and
to apply that
system to the
platform itself and
the JDK.

2017

Java SE 10
Was released on
20 Mar 2018
contains additions
like Additional
Unicode language-
tag extensions, Rot
certificates,
Thread-local
handshakes, Heap
allocation on
alternative
memory devices.

2018

Java SE 11 (LTS)
Was released on 25
Sep 2018 contains
additions like
Dynamic class-file
constants, Epsilon: a
no-op garbage
collector. Local-
variable syntax for
lambda parameters.
Low-overhead heap
profiling.

2018

Java SE 12
Was released on
19 Mar 2019
contains additions
like Shenandoah:
A Low-Pause-Time
Garbage
Collector(Experim
ental),
Microbenchmark
Suite, Switch
Expressions
(Preview), JVM
Constants API.

2019

U10M12004-OOP

Java versions

Dr. Helei Cui 49

Java SE 13
Was released on
17 Sep 2019. It
includes the
following new
features like
Dynamic CDS
Archives, ZGC:
uncommit
unused memory,
reimplement the
legacy socket API.

2019

Java SE 14
Was released on
17 Mar 2020. It
includes the
following new
features like
pattern matching
for instanceof,
packaging tool,
JFR event
streaming, non-
volatile mapped
byte buffers.

2020

Java SE 15
Was released on
15 Sep 2020. It
adds support for
multi-line string
literals. The
Shenandoah and
Z garbage
collectors(latter
sometimes abbr.
ZGC) are now
ready for use in
production.

2020

Java SE 16
Was released on
16 Mar 2021. It
removes Ahead-
of-Time
compilation
options, enables
C++ 14 language
features and the
source code of
Java is migrated
to GitHub.

2021

U10M12004-OOP

Java versions

Dr. Helei Cui 50

Java SE 17 (LTS)
Was released on
14 Sep 2021. It
contains features
like always-strict
floating point
semantics, a
uniform API for
pseudo random
number generators,
and much more.

2021

Java SE 18
Was released on
22 Mar 2022.
Set UTF-8 as the
default encoding.
A new command
jwebserver is
provided for
testing,education,
demonstration
and other needs.

2022

Java SE 19
Was released on
20 Sep 2022.
The record
pattern extends
pattern matching
and expresses
more complex
data queries.
Gradually
introduce virtual
threads.

2022

Java SE 20
Was released on
Mar 2023. Seven
JDK Enhancement
Proposals (JEPs)
updates and
improvements are
provided. Most of
the updates are to
improve features
introduced in
earlier versions.

2023

U10M12004-OOP

Java versions

Dr. Helei Cui 51

Java SE 22
Was released on
19 Mar 2024. It
delivers 12
enhancements
that are significant
enough to warrant
their own JEPs,
including seven
preview features
and one incubator
feature.

2024

Java SE 23
Was released on
17 Sep 2024. It
delivers 12 JEPs
updates and
improvements.
The Oracle JDK
now includes the
Oracle GraalVM JIT
compiler as one of
its available JIT
compilers.

2024

Java SE 24
Will be released
in Mar 2025.
...

20252023

Java SE 21 (LTS)
Was released on 19
Sep 2023. Thousands
of updates for
performance,
stability, and security,
plus many new
features. 15
enhancements have
separate JEPs,
covering six previews
and one incubator
feature.

U10M12004-OOP

Java's six-month release cadence

Dr. Helei Cui 52

https://blogs.oracle.com/java/post/the-arrival-of-java-21

U10M12004-OOP

Currently supported releases

Dr. Helei Cui 53

Version Initial Release Current Release Version Info End of Life

21 2023-09-19
21.0.6

2025-01-21

Documentation
Configurations

Risk Matrix
JSR 396

2031-09-30

17 2021-09-14
17.0.1

2021-10-19
Open JDK Project Page

JSR 392
2029-09-30

11 2018-09-25
11.0.13

2021-10-19

Release Notes
Documentation

Certified Configurations
Risk Matrix

Open JDK Project Page
JSR 384

2026-09-30

8 2014-03-18
8u311

2021-10-19

Release Notes
Documentation

Certified Configurations
Risk Matrix

JSR 337

2030-12-31

More information on https://www.java.com/releases/

https://docs.oracle.com/en/java/javase/21/
https://www.oracle.com/java/technologies/javase/products-doc-jdk21certconfig.html
https://www.oracle.com/security-alerts/cpujan2024.html#AppendixJAVA
https://jcp.org/en/jsr/detail?id=396
https://openjdk.java.net/projects/jdk/17
https://jcp.org/en/jsr/detail?id=392
https://www.oracle.com/java/technologies/javase/11-0-11-relnotes.html
https://docs.oracle.com/en/java/javase/11
https://www.oracle.com/java/technologies/javase/products-doc-jdk11certconfig.html
https://www.oracle.com/security-alerts/cpuApr2021.html#AppendixJAVA
https://openjdk.java.net/projects/jdk/11
https://jcp.org/en/jsr/detail?id=384
https://www.oracle.com/java/technologies/javase/8u291-relnotes.html
https://docs.oracle.com/javase/8
https://www.oracle.com/java/technologies/javase/products-doc-jdk8-jre8-certconfig.html
https://www.oracle.com/security-alerts/cpuApr2021.html#AppendixJAVA
https://jcp.org/en/jsr/detail?id=337
https://www.java.com/releases/

U10M12004-OOP

Let’s see common misconceptions
about Java

Dr. Helei Cui 54

U10M12004-OOP

Misconceptions about Java
• “Java is an extension of HTML or XML.”

• Java is a programming language.

• HTML is a way to describe the structure of a web page.

• XML is a way to describe data.

• Java and HTML have nothing in common except that there
are HTML extensions for placing Java applets on a web page.

• You can process XML data with any programming language,
but the Java API contains excellent support for XML
processing. In addition, many important XML tools are
implemented in Java.

Dr. Helei Cui 55

U10M12004-OOP

Misconceptions about Java
• “Java is an easy programming language to learn.”

• No programming language as powerful as Java is easy.

• You always have to distinguish between how easy it is to write toy
programs and how hard it is to do serious work.

Dr. Helei Cui 56

https://www.google.com/url?sa=i&url=http%3A%2F%2Fusedsportscars.co.uk%2Ftoy-vw-lupo-vs-real-vw-
lupo%2F&psig=AOvVaw340J2dNlWxx6JAEYOC4l1T&ust=1615608090046000&source=images&cd=vfe&ved
=0CAIQjRxqFwoTCOi_wKrvqe8CFQAAAAAdAAAAABAJ

U10M12004-OOP

Misconceptions about Java
• “Java will become a universal programming

language for all platforms.”
• This is possible in theory. But in practice, there are

domains where other languages are entrenched.
• Objective C and its successor, Swift, are not going to be

replaced on iOS devices.

• Anything that happens in a browser is controlled by JavaScript.

• Windows programs are written in C++ or C#.

• Java has the edge in server-side programming and in cross-
platform client applications.

Dr. Helei Cui 57

U10M12004-OOP

Misconceptions about Java
• “Java is just another programming language.”

• The success of a programming language is determined
mostly by the utility of its surrounding system:
• Are there useful, convenient, and standard libraries for

the features that you need to implement?

• Are there tool vendors that build great programming and
debugging environments?

• Do the language and the toolset integrate with the rest of
the computing infrastructure?

• Java is successful because its libraries let you easily do
things such as networking, web applications, and
concurrency.
• The fact that Java reduces pointer errors is a bonus, so

programmers seem to be more productive with Java.

Dr. Helei Cui 58

U10M12004-OOP

Misconceptions about Java
• “Java is proprietary and should be avoided.”

• When Java was first created, Sun gave free licenses to
distributors and end users.
• Source code for the virtual machine and the libraries has

always been freely available, but only for inspection, not for
modification and redistribution.

• Java was “closed source but playing nice.”

• In 2007, Sun announced that future versions of Java would be
available under the General Public License (GPL), the same
open-source license that is used by Linux.
• Oracle has committed to keeping Java open source.

• Everyone is given a patent grant to use and modify Java,
subject to the GPL, but only on desktop and server platforms.

• If you want to use Java in embedded systems, you need a
different license and will likely need to pay royalties.

• However, these patents will expire within the next decade,
and at that point Java will be entirely free.

Dr. Helei Cui 59

U10M12004-OOP

Misconceptions about Java
• “Java is interpreted, so it is too slow for serious

applications.”
• In the early days of Java, the language was interpreted.

• Nowadays, the Java virtual machine uses a just-in-time
compiler.
• The “hot spots” of your code will run just as fast in Java as

they would in C++, and in some cases even faster.

Dr. Helei Cui 60

U10M12004-OOP

Misconceptions about Java
• “All Java programs run inside a web page.”

• All Java applets run inside a web browser.
• That is the definition of an applet-a Java program running

inside a browser.

• But most Java programs are stand-alone applications
that run outside of a web browser.
• In fact, many Java programs run on web servers and

produce the code for web pages.

Dr. Helei Cui 61

Java applets were deprecated
since Java 9 in 2017 and removed
from Java SE 11 (18.9), released
in September 2018.

U10M12004-OOP

Misconceptions about Java
• “Java programs are a major security risk.”

• In the early days of Java, there were some well-
publicized reports of failures in the Java security system.
• The technical failures that they found have all been

quickly corrected.

• Later, there were more serious exploits, to which Sun,
and later Oracle, responded too slowly.
• Browser manufacturers reacted, and perhaps overreacted,

by deactivating Java by default.

• Even 20 years after its creation, Java is far safer than
any other commonly available execution platform.

Dr. Helei Cui 62

U10M12004-OOP

Misconceptions about Java
• “JavaScript is a simpler version of Java.”

• JavaScript, a scripting language that can be used inside
web pages, was invented by Netscape and originally
called LiveScript.

Dr. Helei Cui 63

U10M12004-OOP

Misconceptions about Java
• “With Java, I can replace my desktop computer

with a cheap ‘Internet appliance’.”
• When Java was first released, some people bet big that

this was going to happen.

• Companies produced prototypes of Java-powered
network computers, but users were not ready to give up
a powerful and convenient desktop for a limited
machine with no local storage.

• Nowadays, of course, the world has changed, and for a
large majority of end users, the platform that matters is
a mobile phone or tablet.
• The majority of these devices are controlled by the

Android platform, which is a derivative of Java.

• Learning Java programming will help you with Android
programming as well.

Dr. Helei Cui 64

U10M12004-OOP

Recap

➢What is Object Oriented Programming (OOP)?
• OOP is a programming paradigm based on the concept of "objects",

which can contain data and code:
• data, in the form of fields (a.k.a. attributes or properties);

• code, in the form of procedures (a.k.a. methods).

➢Four main principles of OOP:
• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

➢Java!

Dr. Helei Cui 65

	幻灯片 1: Object Oriented Programming Chapter 1 Introduction
	幻灯片 2: Introduction to this course
	幻灯片 3: About this course
	幻灯片 4: Teaching group
	幻灯片 5: About me
	幻灯片 6: Quick question 1
	幻灯片 7: Textbooks
	幻灯片 8: Tools
	幻灯片 9: Assessment (tentative)
	幻灯片 10: Chapters
	幻灯片 11: Intended learning outcomes
	幻灯片 12: Suggestions
	幻灯片 13: A first look at Object Oriented Programming (OOP)
	幻灯片 14: What is OOP?
	幻灯片 15: Some basic terminologies
	幻灯片 16: Four main principles
	幻灯片 17: Encapsulation
	幻灯片 18: Abstraction
	幻灯片 19: Inheritance
	幻灯片 20: Polymorphism
	幻灯片 21: Polymorphism
	幻灯片 22: Object-oriented vs Procedural
	幻灯片 23: Understand the design decisions that shaped Java
	幻灯片 24: What is Java?
	幻灯片 25: Java is Popular
	幻灯片 26: A short video (2 min)
	幻灯片 27: The “White Paper” buzzwords
	幻灯片 28: “Simple”
	幻灯片 29: “Object-Oriented”
	幻灯片 30: “Distributed”
	幻灯片 31: “Robust”
	幻灯片 32: “Secure”
	幻灯片 33: “Architecture-Neutral”
	幻灯片 34: Quick question 2
	幻灯片 35: “Portable”
	幻灯片 36: “Interpreted”
	幻灯片 37: Compiling vs Interpreting (6 min)
	幻灯片 38: “High-Performance”
	幻灯片 39: “Multithreaded”
	幻灯片 40: “Multithreaded”
	幻灯片 41: “Dynamic (and Extensible)”
	幻灯片 42: Why is Java popular?
	幻灯片 43: Become familiar with the history of Java
	幻灯片 44: Before Java 1.0
	幻灯片 45: History of Java (2 min)
	幻灯片 46: Java versions
	幻灯片 47: Java versions
	幻灯片 48: Java versions
	幻灯片 49: Java versions
	幻灯片 50: Java versions
	幻灯片 51: Java versions
	幻灯片 52: Java's six-month release cadence
	幻灯片 53: Currently supported releases
	幻灯片 54: Let’s see common misconceptions about Java
	幻灯片 55: Misconceptions about Java
	幻灯片 56: Misconceptions about Java
	幻灯片 57: Misconceptions about Java
	幻灯片 58: Misconceptions about Java
	幻灯片 59: Misconceptions about Java
	幻灯片 60: Misconceptions about Java
	幻灯片 61: Misconceptions about Java
	幻灯片 62: Misconceptions about Java
	幻灯片 63: Misconceptions about Java
	幻灯片 64: Misconceptions about Java
	幻灯片 65: Recap

