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Recap

➢JDK, JRE, JVM?
• JDK is a software development kit
• JRE is a software bundle that allows Java program to run
• JVM is an environment for executing bytecode

➢Run HelloWorld.java
• Using Command-Line Tools

• Using an IDE, e.g., Eclipse

➢Use UML editor
➢Violet or diagrams.net
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FirstSample.java

• “public”: access modifier
• Define the accessibility of a class.

• “class”: “a container for the program logic”
• Everything in a Java program must be inside a class.

• “FirstSample”: name of the class
• The file name for the source code must be the same as 

the name of the public class, with “.java” appended.
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public class FirstSample {

    public static void main(String[] args) {

        System.out.println(“We will not use ‘Hello, World!’”);

    }

}
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Rules for class names in Java

1. Names must begin with a letter, and after that, they can 
have any combination of letters and digits. 

2. The length is essentially unlimited. 

3. Do not use a Java reserved word for a class name.
• E.g., public, class, static, void, etc.

4. The standard naming convention:
• Class names are nouns that start with an uppercase letter.

• Camel Case: If a name consists of multiple words, use an initial 
uppercase letter in each of the words.

• E.g., HelloWorld, FirstSample.
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The braces { }
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public class FirstSample

{

    public static void main(String[] args)

    {

        System.out.println(“We will not use ‘Hello, World!’”);

    }

}

public class FirstSample {

    public static void main(String[] args) {

        System.out.println(“We will not use ‘Hello, World!’”);

    }

}
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FirstSample.java

• The body of the main method contains a statement 
that outputs a single line of text to the console.
• Here, we are using the System.out object and calling its 
println method.

• The periods (“.”) are used to invoke a method.

• A method can have zero, one or more parameters (arguments).

• Parentheses are always needed even there is no parameters.
• E.g., System.out.println();
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public class FirstSample {

    public static void main(String[] args) {

        System.out.println(“We will not use ‘Hello, World!’”);

    }

}
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Comments

• Three types:
1. // Single-line comments

2. /* Multi-line Comments 

              The second line of this comment  */

3. /**

* This is used to generate documentation automatically

* @version 1.0 2021-03-19

* @author Harry Cui

*/

• Comments can be used to explain Java code, and to make it 
more readable.

• Comments do not show up in the executable program.
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Java is strongly typed

• All variable must be declared.
• <type> <variable>;

• E.g., int x;

• After a variable is declared, you can assign to it.
• E.g., x = 4;

• We call a variable which has a class for a type an object.
• E.g., Car c;

• Once an object is declared, you can
• assign to it, often with a creation statement,

• access its data members, and

• call its methods.

• E.g., c = new Car(“BMW”); c.make = “Audi”; c.getMake();
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3.3.1 Integer types

• For numbers without fractional parts.

• In Java, the ranges of the integer types do not depend on 
the machine on which you will be running the Java code.
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Type Storage Range (Inclusive)

int 4 bytes -2,147,483,648 to 2,147,483,647 (just over 2 billion)

short 2 bytes -32,768 to 32,767

long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

byte 1 byte -128 to 127
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Literals in Java

• A literal is a source code representation of a fixed value.
• They are represented directly in the code without any computation.

• Literals can be assigned to any primitive type variable.

• byte, int, long, and short can be expressed in decimal (base 10), 
hexadecimal (base 16), octal (base 8) or binary (base 2) number 
systems.
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byte a       = 65;

int  decimal = 100;

long num     = 100L;      // with suffix L or l 

int  octal   = 0144;      // with prefix 0

int  hex     = 0x64;      // with prefix 0x or 0X

int  bin     = 0b1100100; // with prefix 0b or 0B

Data type Literal
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3.3.2 Floating-point types

• For numbers with fractional parts.

• The name double refers to the fact that these numbers have 
twice the precision of the float type.
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Type Storage Range

float 4 bytes
Approximately ±3.40282347E+38F (6-7 significant 
decimal digits)

double 8 bytes
Approximately ±1.79769313486231570E+308 (15 
significant decimal digits)

float  fNum = 3.14F; // with suffix F or f

double dNum = 3.14D; // with suffix D or d (optionally)
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Caution: round-off error

• Reason:
• Floating-point numbers are represented in the binary number 

system. There is no precise binary representation of the fraction 
1/10, just as there is no accurate representation of the fraction 1/3 
in the decimal system. 

• Solution:
• Using the BigDecimal class if you need precise numerical 

computations.
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System.out.println(2.0 - 1.1); // result: 0.8999999999999999 not 0.9

System.out.println(BigDecimal.valueOf(2.0).subtract(BigDecimal.valueOf(1.1))); 
// result: 0.9
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3.3.3 The char type

• Used for describing individual characters.

• 'A' is a character constant with a value of 65. 

• "A" is a string containing a single character.
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char ch = 'A';

char tm = '\u2122’; // Unicode for the trademark symbol ( )

char ch1 = 'A';

char ch2 = '\u0041'; // Unicode for the character A
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Escape sequences for special characters

• Escape sequence is a character preceded by a backslash (\) 
and has a special meaning to the compiler.
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Escape Sequence Name Unicode Value

\b Backspace \u0008

\t Tab \u0009

\n Linefeed \u000a

\r Carriage return \u000d

\" Double quote \u0022

\' Single quote \u0027

\\ Backslash \u005c

System.out.println("She said \"Hello!\" to me.");

// output: She said "Hello!" to me.

Java backspace escape 
doesn’t work?
https://stackoverflow.com/que
stions/3328824/java-
backspace-escape
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3.3.4 Unicode and the char type

• Unicode is an information technology standard for the 
consistent encoding, representation, and handling of text 
expressed in most of the world's writing systems.
• It was invented to overcome the limitations of traditional character 

encoding schemes. 

• Before Unicode, there were many different standards: ASCII in the 
United States, BIG-5 for Chinese, etc.

• See more on “Unicode Encoding! UTF-32, UCS-2, UTF-16, & UTF-8!” 
https://www.youtube.com/watch?v=uTJoJtNYcaQ 
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Strong recommendation: 
Not to use the char type in your programs unless you are 
actually manipulating UTF-16 code units. You are almost 
always better off treating strings as abstract data types.

https://www.youtube.com/watch?v=uTJoJtNYcaQ
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ASCII vs Unicode in Java (13 min)
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https://www.youtube.com/watch?v=61Bs7-ycL64

See more on https://www.youtube.com/watch?v=ut74oHojxqo

https://www.youtube.com/watch?v=ut74oHojxqo


U10M12004-OOP

3.3.5 The boolean type

• Used for evaluating logical conditions.
• Only two values: true or false

• No conversion between integers and Boolean values.
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boolean isJavaFun    = true;

boolean isJavaBoring = false;

System.out.println(isJavaFun);    // Outputs true

System.out.println(isJavaBoring); // Outputs false

// Boolean Expression

int x = 10;

int y = 9;

System.out.println(x > y);        // Outputs true
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Primitive vs reference

• Types in Java are divided into two categories - primitive 
types and reference types. 
• Primitive types: boolean, byte, char, short, int, long, float, 
double. 

• All other types are reference types, so classes, which specify the 
types of objects, are reference types.

• A primitive-type variable can store exactly one value of its 
declared type at a time.
• Primitive-type instance variables are initialized by default.

• Variables of types byte, char, short, int, long, float and 
double are initialized to 0. 

• Variables of type boolean are initialized to false.

• Reference-type variables (called references) store the 
location (address) of an object in the computer’s memory. 
• Such variables refer to objects.
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Primitive and Reference Types in Memory (5 min)
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https://www.youtube.com/watch?v=LTnp79Ke8FI
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Variables vs Constants

• A constant is a data item whose value cannot 
change during the program’s execution.
• Thus, as its name implies - the value is constant.

• A variable is a data item whose value can change 
during the program’s execution.
• Thus, as its name implies - the value can vary.
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https://byjus.com/maths/variables-and-constants-in-algebraic-expressions/
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3.4.1 Declaring variables

• General form: type variableName;

• A variable name must begin with a letter and must 
be a sequence of letters or digits.
• letter: 'A'–'Z', 'a'–'z', '_', '$', or any Unicode 

character that denotes a letter in a language.

• digit: '0'–'9' and any Unicode characters that denote a digit in a 
language.

• Symbols like '+' or '©' cannot be used inside variable names, nor 
can spaces.

• Case-sensitive, e.g., "aNum" and "ANum" are different.
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double salary;

long earthPopulation;

boolean done;

int i, j;              // correct but not recommended
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3.4.2 Initializing variables

• You must explicitly initialize it by means of an 
assignment statement.
• You can never use the value of an uninitialized variable.
• Otherwise, you would see an ERROR, “variable not 

initialized”.

• Using an equal sign =

• Good style: declare variables as closely as possible 
to the point where they are first used.
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int vacationDays;

vacationDays = 12;

int vacationDays = 12; // correct but not recommended
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Local type inference in Java 10

• Can use var instead type for local variables:

• Still strongly typed:

• Useful for unwieldy type names:
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var counter = 0;                        // an int

var message = "Greetings, earthlings!"; // a String

counter = 0.5; // Error: can’t assign a double to an int

var traces = Thread.getAllStackTraces(); // a Map<Thread, 
StackTraceElement[]>
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3.4.3 Constants

• Using final to denote a constant.

• Good style: name it in all uppercase with words 
separated by underscores ("_").
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final double PI = 3.14;

final int VACATION_DAYS = 12;
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Class constants

• Using static final to create a constant so it’s 
available to multiple methods inside a single class.

• If the constant is declared public, other classes 
can use it like Constants2.CM_PER_INCH.
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public class Constants2 {

    public static final double CM_PER_INCH = 2.54;

    public static void main(String[] args) {

        double paperWidth = 8.5;

        System.out.println("Paper width in centimeters: "

           + paperWidth * CM_PER_INCH);

    }

}
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3.4.4 Enumerated types

• To describe a variable that only hold a restricted set 
of values.
• E.g., sizes of pizza: small, medium, large, and extra large.
• Only a finite number of named values.

• Variable of type s can only hold size values or null.
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public class Example {

    enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

    public static void main(String[] args) {

        // Now you can declare variables of this type:

        Size s = Size.MEDIUM;

        System.out.println(s); // Outputs: MEDIUM

    }

}
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3.5.1 Arithmetic operators

• The usual arithmetic operators:
• Addition +

• Subtraction -

• Multiplication *

• Division /
• Integer division if both arguments are integers, and 

floating-point division otherwise.

• E.g., 15 / 2 is 7, 15.0 / 2 is 7.5.

• Integer remainder (a.k.a., modulus) %
• E.g., 15 % 2 is 1.
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Quick question 1

-7 % 3 = ?

A. 1

B. -1

C. -2

7 % -3 = ?

A. 1

B. -1

C. -2
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% in Java

7 % 3 = 1

-7 % 3 = ?

7 % -3 = ?

• Using the formula a % b = a – a / b * b, you can get

7 % 3 = 7 – 7 / 3 * 3 = 7 – 2 * 3 = 1

-7 % 3 = -7 – (-7) / 3 * 3 = -7 – (-2) * 3 = -1

7 % -3 = 7 – 7 / (-3) * (-3) = 7 – (-2) * (-3) = 1
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Division /

• In Python, the integer division uses “floor function”:
-7 % 3 = -7 - floor(-7 / 3) * 3 = -7 - (-3) * 3 = -7 + 9 = 2

7 % (-3) =  7 - floor(7 / (-3)) * (-3) = 7 - (-3) * (-3) = 7 - 9 = -2

The floor function takes as input a real number x, and gives as output the 
greatest integer less than or equal to x, denoted floor(x).

• In Java or C, the integer division uses “truncation”:
-7 % 3 = -7 - trunc(-7 / 3) * 3 = -7 - (-2) * 3 = -7 + 6 = -1

7 % (-3) = 7 - trunc(7 / (-3)) * (-3) = 7 - (-2) * (-3) = 7 - 6 = 1

For positive real numbers, truncation is done using the floor function. But 
for negative numbers, truncation always rounds towards zero.
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Quick question 2

How to get the ones, tens, hundreds, and thousands digit in 
the number 1,234?

x/1000 ---> thousands digit

x%10 ---> ones digit

x/10%10 ---> tens digit

x/100%10 ---> hundreds digit
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3.5.2 Mathematical functions and constants

• The Math class contains methods for performing basic 
numeric operations and constants π and e.
• E.g., the elementary exponential, logarithm, square root, and 

trigonometric functions.
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The println method operates on the System.out object. 
But the sqrt method in the Math class does not operate on 
any object, which is called a static method.

double x = 4;

double y = Math.sqrt(x);

System.out.println(y);       // prints 2.0

System.out.println(Math.PI); // prints 3.141592653589793

System.out.println(Math.E);  // prints 2.718281828459045
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3.5.3 Conversions between numeric types

• These conversions are automatic:
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Dotted arrows indicate 
possible precision loss.

int n = 123456789;

float f = n; // f is 1.23456792E8
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Rules

• When two values are combined with a binary operator (such 
as n + f where n is an integer and f is a floating-point 
value), both operands are converted to a common type 
before the operation is carried out.
• If either of the operands is of type double, the other one will be 

converted to a double.

• Otherwise, if either of the operands is of type float, the other one 
will be converted to a float.

• Otherwise, if either of the operands is of type long, the other one 
will be converted to a long.

• Otherwise, both operands will be converted to an int.
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3.5.4 Casts

• Conversions in which loss of information is possible are 
done by means of casts. 
• The syntax for casting is to give the target type in parentheses, 

followed by the variable name.

• Use the Math.round method to round a floating-point number to 
the nearest integer.
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double x = 9.997;

int nx = (int) x; // nx is 9

double x = 9.997;

int nx = (int) Math.round(x); // nx is 10

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html
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Caution

• If you try to cast a number of one type to another that is out 
of range for the target type, the result will be a truncated 
number that has a different value.

• The number 300 in binary form is 100101100, then byte 
type only gets 8 digits. So, the x only gets 00101100, i.e., 44.
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byte x = (byte) 300;

System.out.println(x); // Outputs 44
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3.5.5 Combining assignment with operators

• “x += 4;” is equivalent to “x = x + 4;”

• Also -=, *=, /=, %=, and so on.

• Note:
• If the operator yields a value whose type is different 

from that of the left-hand side, then it is enforced to fit.
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int x = 1;

x += 3.5; // Equivalent to x = (int)(x + 3.5)

System.out.println(x); // Outputs 4



U10M12004-OOP

3.5.6 Increment and decrement operators

• ++ and --
• Postfix form: m++ adds 1 to the current value of the 

variable m, and m-- subtracts 1 from it.

• Prefix form: ++m and --m.
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int m = 4, n;

n = ++m; // m = m + 1; n = m; --> n and m are 5

n = --m; // m = m – 1; n = m; --> n and m are 3

n = m++; // n = m; m = m + 1; --> n is 4, m is 5

n = m--; // n = m; m = m – 1; --> n is 4, m is 3
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Quick question 3

int m = 5; System.out.println(m++);

A. Outputs 5

B. Outputs 6

C. Outputs 7

int m = 5; System.out.println(--m);

A. Outputs 3

B. Outputs 4

C. Outputs 5
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We recommend against using ++ (or --) inside expressions 
because this often leads to confusing code and annoying bugs.

int m = 5; 

m++;

System.out.println(m);

int m = 5; 

--m;

System.out.println(m);
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3.5.7 Relational and boolean Operators

• Relational operators: 
• == (equality test) != (inequality test)

• <  (less than)    <=  (less than or equal) 

• >  (greater than) >=   (greater than or equal) 

• Boolean operators: 
• && (logical and) || (logical or) ! (logical not)

• E.g., expression1 && expression2

• If the truth value of the first expression has been determined to be 
false, then it is impossible for the result to be true. Thus, the value 
for the second expression is not calculated.
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x != 0 && 1 / x > x + y 

// The second part is never evaluated if x equals zero. 

// Thus, 1/x is not computed if x is zero, and no divide-by-zero 

// error can occur.
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Truth table

• A truth table is a mathematical table used in logic.
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!x x&&y X||y
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The ternary ?: operator

• condition ? expression1 : expression2

• It evaluates to the first expression if the condition is 
true, to the second expression otherwise.
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int a = 10;

int b = 20;

int max = a >= b ? a : b;
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3.5.8 Bitwise Operators

• & (bitwise and) | (bitwise or) ^ (bitwise xor) ~ (bitwise 
compliment)

• These operators work on bit patterns.
• E.g., int fourthBitFromRight = (n & 0b1000) / 0b1000;

• It gives you a 1 if the fourth bit from the right in the binary 
representation of n is 1, and 0 otherwise.

• Using & with the appropriate power of 2 lets you mask out all but a 
single bit.

• When applied to boolean values, the two bitwise operators 
(& and |) also returns a boolean value. 
• These operators are like the logical operators (&& and ||), except 

that the bitwise operators (& and |) are not evaluated in “short 
circuit” fashion - that is, both arguments are evaluated before the 
result is computed.
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3.5.8 Bitwise Operators

• >> (right shift) << (left shift)

• They shift a bit pattern right or left.
• Assuming A is 60 (0011 1100), then

• A << 2 will give 240 which is 1111 0000

• A >> 2 will give 15 which is 1111

• E.g., int fourthBitFromRight = (n & (1 << 3)) >> 3;

• >>> (zero fill right shift)

• It fills the top bits with zero, unlike >> which 
extends the sign bit into the top bits.
• Assuming A is 60 (0011 1100), then

• A >>>2 will give 15 which is 0000 1111

Dr. Helei Cui 49



U10M12004-OOP

Quick question 4
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int A = 60;

int B = A >> 2;

int C = A >>> 2;

System.out.println("A = " + A + " in binary: " + 
Integer.toBinaryString(A));

System.out.println("B = " + B + " in binary: " + 
Integer.toBinaryString(B));

System.out.println("C = " + C + " in binary: " + 
Integer.toBinaryString(C));

// output

A = 60 in binary: 111100

B = 15 in binary: 1111

C = 15 in binary: 1111
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Quick question 5
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int A = -60;

int B = A >> 2;

int C = A >>> 2;

System.out.println("A = " + A + " in binary: " + 
Integer.toBinaryString(A));

System.out.println("B = " + B + " in binary: " + 
Integer.toBinaryString(B));

System.out.println("C = " + C + " in binary: " + 
Integer.toBinaryString(C));

// output

A = -60 in binary: 11111111111111111111111111000100

B = -15 in binary: 11111111111111111111111111110001

C = 1073741809 in binary: 111111111111111111111111110001
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Two’s complement (4 min)
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https://www.youtube.com/watch?v=Z3mswCN2FJs
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3.5.9 Parentheses and Operator Hierarchy

• If no parentheses are used, operations are performed in the hierarchical 
order indicated. 

• Operators on the same level are processed from left to right, except for 
those that are right-associative.
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Operators Associativity

[] . () (method call) Left to right

! ~ ++ -- + (unary) - (unary) () (cast) new Right to left

+ - * / % Left to right

<< >> >>> Left to right

< <= > >= instanceof Left to right

== != Left to right

& | ^ && || Left to right

?: Right to left

= += -= *= /= %= &= |= ^= <<= >>= >>>= Right to left
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Strings in Java
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• Sequences of Unicode characters.
• E.g., "Java\u2122" consists of the five Unicode characters J, a, v, 
a, and .

• Java does not have a built-in string type. Instead, the 
standard Java library has a predefined String class.
• String literals enclosed in double quotes " " .

• Each quoted string is an instance of the String class.

String e = "";              // an empty string

String greeting = "Hello";  // a string consisting of "Hello"
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3.6.1 Substrings
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• You can extract a substring from a larger string with the 
substring method of the String class.

• The second parameter of substring is the first position that 
you do not want to copy.
• In the above example, it means from position 0 inclusive to position 

3 exclusive.

• The string s.substring(a, b) always has length b - a.
• E.g., the substring "Hel" has length 3 - 0 = 3.

String greeting = "Hello";

String s = greeting.substring(0, 3); // s is "Hel"



U10M12004-OOP

3.6.2 Concatenation

Dr. Helei Cui 57

• You can use + to join (concatenate) two strings.

• No space between the words: The + operator joins two 
strings in the order received, exactly as they are given.

• When you concatenate a string with a value that is not a 
string, the latter is converted to a string.
• Every Java object can be converted to a string!

String firstName = "Harry";

String lastName = "Cui";

String fullName = firstName + lastName; // "HarryCui"

int age = 16;

String rating = "PG" + age; // "PG16"

System.out.println("Age is " + age); // outputs "Age is 16"  
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• If you need to put multiple strings together, separated by a 
delimiter, use the static join method:

• As of Java 11, there is a repeat method:

String all = String.join(" / ", "S", "M", "L", "XL");

// all is the string "S / M / L / XL"

String repeated = "Java".repeat(3); 

// repeated is "JavaJavaJava"
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• The String class gives no methods that let you change a 
character in an existing string!
• The objects of the String class are immutable.

String greeting = "Hello";

greeting = "Help"; // greeting = greeting.substring(0, 3) + "p";

Changing the contents of a String variable will make it refer 
to a different string.
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• To test whether two strings are equal, use the equals 
method, i.e., s.equals(t).
• Returns true if the strings s and t are equal, false otherwise.

• The strings s and t can be string variables or string literals.

• To test whether two strings are identical except for the 
upper/lowercase letter distinction, use 
equalsIgnoreCase method.

• Do not use the == operator, which only test if the strings are 
stored in the same location.

"Hello".equals(greeting);

"Hello".equalsIgnoreCase(greeting);

String str = "Hello";

System.out.println("Hello" == str);
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• Do not use the == operator, which only test if the strings are 
stored in the same location.

• If the virtual machine always arranges for equal strings to be 
shared, then you could use the == operator for testing 
equality. 
• But only string literals are shared, not strings that are the result of 

operations like + or substring.

String str = "Hello";

System.out.println("Hello"== str); // Outputs true

String str2 = "Helloabc".substring(0,5);

System.out.println(str == str2);         // false

System.out.println(str.equals(str2));    // true
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• The empty string "" is a string of length 0.
• if (str.length() == 0)

• if (str.equals(""))

• An empty string is a Java object which holds the string 
length (namely, 0) and an empty contents. 

• However, a String variable can also hold a special value, 
called null, that indicates that no object is currently 
associated with the variable.
• if (str == null)

• So, when you want to test if str is neither null nor empty.

if (str != null && str.length() != 0)
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• Java strings are sequences of char values.
• The char data type is a code unit for representing Unicode code points in the 

UTF-16 encoding. 
• The most commonly used Unicode characters can be represented with a single 

code unit. 
• The supplementary characters require a pair of code units.

• s.length() is the number of code units (not Unicode characters, 
which means code unit size is 8 bits, just for simplicity, this method 
counts the number of characters in string s).

• s.charAt(i) is the ith code unit.

• To get the ith code point:

• To get all code points:

int index = s.offsetByCodePoints(0, i);

int cp = s.codePointAt(index);  // returns the Unicode value 
of the character at the specified index in a string. 

int[] codePoints = str.codePoints().toArray();
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• Many other useful String methods.

• trim() yields a new string, trimming leading and trailing 
white space.

• toLowerCase() yields a new string that converts all 
uppercase characters to lowercase.

• indexOf(), lastIndexOf() find the location of a 
substring.

• Check out the online API documentation.

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/String.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/String.html
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• The StringBuilder class is to build up strings from shorter 
strings, such as keystrokes or words from a file. 
• Using string concatenation is inefficient because every time you 

concatenate strings, a new String object is constructed.

StringBuilder builder = new StringBuilder();

builder.append("This ");

builder.append("is ");

builder.append("a ");

builder.append("message.");

        

String completedString = builder.toString();

System.out.println(completedString);
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• The APIs of both classes are identical.

StringBuffer StringBuilder

Thread-Safe Not Thread-Safe

Synchronized Not Synchronized

Since Java 1.0 Since Java 1.5

Slower Faster

https://www.techyourchance.com/wp-content/uploads/2016/11/observer-thread-synchronization.jpg
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• To read console input, you first construct a Scanner that is 
attached to System.in.

• Now you can use the various methods of the Scanner class.

Scanner in = new Scanner(System.in);

System.out.print("What is your name? ");

String name = in.nextLine(); // reads a line of input

String firstName = in.next(); // reads a single word

System.out.print("How old are you? ");

int age = in.nextInt(); // reads an integer
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import java.util.*;

public class InputTest {

    public static void main(String[] args) {

        Scanner in = new Scanner(System.in);

        // get first input

        System.out.print("What is your name? ");

        String name = in.nextLine();

        // get second input

        System.out.print("How old are you? ");

        int age = in.nextInt();

        // display output on console

        System.out.println("Hello, " + name + ". Next year, 
you'll be " + (age + 1));

 }

}
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• The Scanner class is not suitable for reading a password 
from a console since the input is plainly visible to anyone. 
Java 6 introduces a Console class specifically for this 
purpose. 

• To read a password, use the following code:

• Input processing with a Console object is not as 
convenient as with a Scanner. 
• You must read the input a line at a time. 

• There are no methods for reading individual words or numbers.

• May not be available in you IDE.

Console cons = System.console();

String username = cons.readLine("User name: ");

char[] passwd = cons.readPassword("Password: ");
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• This is a problem if you want to format your output, just like 
the printf() in C.
• Fortunately, Java 5 brought back this useful method.

• You can also supply multiple parameters to printf().

double x = 10000.0 / 3.0;

System.out.print(x);          // Outputs 3333.3333333333335

System.out.printf("%8.2f", x); // Outputs " 3333.33"

System.out.printf("Hi, %s. You'll be %d", name, age);
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• Each of the format specifiers that start with a % character is 
replaced with the corresponding argument. 
• The conversion character that ends a format specifier indicates the 

type of the value to be formatted.

• E.g., f is a floating-point number, s a string, and d a decimal integer.

Conversion Character Type Example

d Decimal integer 200

x Hexadecimal integer c8

o Octal integer 310

f
Fixed-point floating 

point
15.9

e
Exponential floating-

point
1.59e+01

s String Hello
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• You can also specify flags that control the appearance of the 
formatted output.
• E.g., the comma flag adds group separators.

• Using String.format() to create a formatted string 
without printing it.

System.out.printf("%,.2f", 10000.0 / 3.0); // Outputs 3,333.33

String msg = String.format("Hi, %s. You'll be %d", name, age);
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• To read from a file, construct a Scanner object like this:

• If the file name contains backslashes, remember to escape each of 
them with an additional backslash.

• E.g., "c:\\mydirectory\\myfile.txt".

• Then you can use the Scanner method to read lines or integers.

Scanner in = new Scanner(Path.of("myfile.txt"), 
StandardCharsets.UTF_8);

String msg = in.nextLine();

System.out.println(msg);
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• To write to a file, construct a PrintWriter object.

• If the file does not exist, it is created. 

• Then you can use the print, println, and printf commands as 
you did when printing to System.out.

PrintWriter out = new PrintWriter("myfile.txt", 
StandardCharsets.UTF_8);

out.println("This is a new string!");

out.close();
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https://www.youtube.com/watch?v=hgF21imQ_Is
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• It is recommended to use buffered I/O streams as opposed 
to Scanner and PrintWriter classes:
• They have significantly larger buffer memory than Scanner and 
PrintWriter. It is recommended to use BufferedReader if you 
want to get long strings from a stream, and use Scanner if you 
want to parse specific type of token from a stream.

• Buffered Streams are synchronous while unbuffered are not. This 
means you can work with multiple threads when using Buffered 
Streams.

• Scanner is memory and CPU heavy when compared to 
BufferedReader because it internally uses “regular expressions” 
for matching your “nextXXX()” as opposed to just reading 
everything till the end of line as in the case of a regular Reader.

• BufferedReader is a bit faster as compared to Scanner.

• See more https://medium.com/@isaacjumba/why-use-
bufferedreader-and-bufferedwriter-classses-in-java-39074ee1a966 

https://medium.com/@isaacjumba/why-use-bufferedreader-and-bufferedwriter-classses-in-java-39074ee1a966
https://medium.com/@isaacjumba/why-use-bufferedreader-and-bufferedwriter-classses-in-java-39074ee1a966
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• A block, or compound statement, consists of a number of 
Java statements, surrounded by a pair of braces.
• Blocks define the scope of your variables. A block can be nested 

inside another block.

public static void main(String[] args) {

    int n;

    . . .

    {

        int k;

        . . .

    } // k is only defined up to here

}
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• You may not declare identically named variables in two 
nested blocks.

public static void main(String[] args) {

    int n;

    . . .

    {

        int k;

        int n; // ERROR – can’t redefine n in inner block

        . . .

    }

}



U10M12004-OOP

3.8.2 Conditional Statements

Dr. Helei Cui 81

• if (condition) statement
• The condition must be surrounded by 

parentheses.

• For multiple statements, you should use 
a block.

if (yourSales >= target) {

    performance = "Satisfactory";

    bonus = 100;

}
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• if (condition) statement1 else statements
• The condition must be surrounded by parentheses.

• For multiple statements, you should use a block.

if (yourSales >= target) {

    performance = "Satisfactory";

    bonus = 100 + 0.01 * (yourSales - target);

} else {

    performance = "Unsatisfactory";

    bonus = 0;

}

It is a good idea to use braces “{}” to clarify the structure.
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• if ... else if ...

if (yourSales >= 2*target) {

    // ...

} else if (yourSales >= 1.5*target) {

    // ...

} else if (yourSales >= target) {

    // ...

} else {

    // ...

}
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• while (condition) statement
• Executes a statement (which may be a block statement) while a 

condition is true.

• Tests the condition at the top. So the code in the block might never 
be executed.

class WhileDemo {

    public static void main(String[] args){

        int count = 1;

        while (count < 11) {

            System.out.println("Count is: " + count);

            count++;

        }

    }

}
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• do statement while (condition);
• Ensures that a statement of a block is executed at least once.

• If the condition is true, it repeats the statement and retests the 
condition, and so on.

class DoWhileDemo {

    public static void main(String[] args){

        int count = 1;

        do {

            System.out.println("Count is: " + count);

            count++;

        } while (count < 11);

    }

}
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• The for loop is a general construct to 
support iteration controlled by a 
counter or similar variable that is 
updated after every iteration.

for (int i = 1; i <= 10; i++) {

System.out.println(i);

}
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for (int i = 1; i <= 10; i++) {

System.out.println(i);

}

for loop
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• The first slot (int i = 1;) of the for statement usually 
holds the counter initialization.

• The second slot (i <= 10;) gives the condition that will be 
tested before each new pass through the loop.

• The third slot (i++) specifies how to update the counter.

Unwritten rule: the three slot should only initialize, test, and 
update the same counter variable.
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for (double x = 0; x != 10; x += 0.1) {

System.out.println(x);

}

Caution
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• This might never stop!

• Because of roundoff errors, the final value might not be 
reached exactly. 
• In this example, x jumps from 9.99999999999998 to 

10.09999999999998 because there is no exact binary 
representation for 0.1.

Be careful with testing for equality of floating-point numbers 
in loops.
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for (int i = 1; i <= 10; i++) {

System.out.println(i);

} // i no longer defined here

Variable scope in for loop
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int i;

for (i = 1; i <= 10; i++) {

System.out.println(i);

} // i is still defined here

for (int i = 1; i <= 10; i++) {

...

}

for (int i = 1; i <= 10; i++) { // This is OK

...

}
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for (int i = 10; i > 0; i--) {

System.out.println("Counting down . . . " + i);

}

for loop and while loop
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int i = 10;

while (i > 0) {

System.out.println("Counting down . . . " + i);

i--;

}

• A for loop can be viewed as a convenient shortcut for a 
while loop.
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• switch statement
• Deals with multiple selections with many 

alternatives.

Scanner in = new Scanner(System.in);

System.out.print("Select an option (1, 2, 
3, 4) ");

int choice = in.nextInt();

switch (choice) {

   case 1:      . . .      break;

   case 2:      . . .      break;

   case 3:      . . .      break;

   case 4:      . . .      break;

   default: // bad input

                . . .      break;

}
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• When there is no “break;”, execution will fall through to 
the next alternative!

int num = 2;

switch (num) {

    case 1:

        System.out.print("One");

    case 2:

        System.out.print("Two");

    case 3:

        System.out.print("Three");

    default:

        System.out.print("Others");

} 

// Outputs TwoThreeOthers
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• A case label can be:
• A constant expression of type char, byte, short, or int;

• An enumerated constant;

• Starting with Java 7, a string literal.

String input = . . .;

switch (input.toLowerCase()) {

    case "yes": // OK since Java 7

    ...

}

Size sz = . . .;

switch (sz) {

    case SMALL: // no need to use Size.SMALL

    ...

}
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• break statement
• Used to “jump out” of a switch statement.

• Can also be used to jump out of a loop.

for (int i = 0; i < 10; i++) {

if (i == 4) {

break;

}

System.out.print(i);

} 

// Outputs 0123
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• continue statement
• Used to break one iteration (in the loop), if a specified condition 

occurs, and continues with the next iteration in the loop.

for (int i = 0; i < 10; i++) {

if (i == 4) {

continue;

}

System.out.print(i);

} 

// Outputs 012356789
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Quick question 6

Write a Java program to check whether a number is a prime or not.

• A prime number is a number which is divisible by only two numbers: 1 and itself. 

• So, if any number is divisible by any other number, it is not a prime number.

• E.g., 29 is a prime number, 33 is not a prime number.
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import java.util.Scanner;

public class CheckPrime {

public static void main(String[] args) {

System.out.print("Please input an integer: ");

Scanner in = new Scanner(System.in);

int num = in.nextInt();

boolean flag = false;

for (int i = 2; i <= num / 2; ++i) {

if (num % i == 0) {    // condition for non-prime number

flag = true;

break;

}

}

if (!flag) {

System.out.println(num + " is a prime number.");

} else {

System.out.println(num + " is not a prime number.");

}

}

}
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• The precision of the basic integer and floating-point types 
is not sufficient!

• Solution: the java.math package has classes for dealing 
with numbers with an arbitrarily long sequence of digits. 
• BigInteger implements arbitrary-precision integer arithmetic.

• BigDecimal does the same for floating-point numbers.

• Use the static valueOf method to turn a number into a big number.

BigInteger a = BigInteger.valueOf(100);

BigDecimal b = BigDecimal.valueOf(2.0);

// You can also use a constructor with a string parameter

BigInteger c = BigInteger.valueOf("12345678901234567890");
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• There are also constants:
• BigInteger.ZERO

• BigInteger.ONE

• BigInteger.TEN

• BigInteger.TWO (since Java 9)

• You cannot use the familiar mathematical operators like +, -, 
*, /, % to combine big numbers.
• Use add, subtract, multiply, divide, mod methods.

BigInteger a = BigInteger.valueOf(100);

BigInteger b = BigInteger.valueOf(200);

BigInteger c = a.add(b); // c = a + b

BigInteger d = c.multiply(b.add(BigInteger.valueOf(2))); 

// d = c * (b + 2)

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/math/BigInteger.html 
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/math/BigDecimal.html 

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/math/BigDecimal.html
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• An array is a data structure that stores a collection of values 
of the same type.
• Specify the array type (that is the element type followed by []) and 

the array variable name, e.g., int[] a.
• However, this only declares the variable a, not yet initialized with an 

actual array.

• Use the new operator to initialize, e.g., a = new int[100].
• The array length need not be a constant, e.g., new int[n];

• But you cannot change its length once you create it.

int[] a = new int[100]; // declares and initializes an array

int n = 100;

int[] b = new int[n];   // the length is n
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• When you create an array of numbers (e.g., int, double), 
all elements are initialized with zero.

• Arrays of boolean are initialized with false. 

• Arrays of objects are initialized with the special value null, 
which indicates that they do not (yet) hold any objects.

String[] names = new String[5]; // strings are all null

null null null null null

names

Index    0        1        2        3        4
String[] array 

reference

String[] array object

Heap memory
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• You can create an array object and supplying initial values 
without using the new operator and specifying the length.

• Anonymous array:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

String[] authors = {

    "James Gosling",

    "Bill Joy",

    "Guy Steele",

    // add more names here and put a comma after each name

};

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

// is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };

smallPrimes = anonymous;
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• It is legal to have arrays of length 0.
• It is useful if you write a method that computes an array result, and 

the result happens to be empty.

• Construct an empty array:
• E.g., new elementType[0] or new elementType[] {}.

Note that an array of length 0 is not the same as null.



U10M12004-OOP

3.10.2 Accessing array elements

Dr. Helei Cui 106

• Access an array element via an integer index, e.g., a[i].
• The array elements are numbered from 0 to length-1.

• Accessing a[length] causes an “array index out of bounds” exception.

• You can use a loop to fill the elements in an array.

int[] a = new int[100];

for (int i = 0; i < 100; i++) {

    a[i] = i; // fills the array with numbers 0 to 99

}

for (int i = 0; i < 10; i++) names[i] = "";

for (int i = 0; i < a.length; i++) { // uses array.length

System.out.println(a[i]);

}
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• for (variable : collection) statement
• Sets the given variable to each element of the collection and then 

executes the statement (which, of course, may be a block).

• The collection expression must be an array or an object of a class 
that implements the Iterable interface, such as ArrayList.

• You can read this loop as “for each element in a”.

for (int element : a) {

    System.out.println(element);

} // looks more concise and less error-prone

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

} // a traditional for loop achieves the same effect
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• There is an even easier way to print all values of an array, 
using the toString method of the Arrays class. 

• The call Arrays.toString(a) returns a string containing 
the array elements, enclosed in brackets and separated by 
commas, such as "[2, 3, 5, 7, 11, 13]".

int[] a = new int[] { 1, 2, 3, 4, 5, 6 };

System.out.println(Arrays.toString(a));

// [1, 2, 3, 4, 5, 6]
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int[] luckyNumbers = smallPrimes;

luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

When copy one array variable into another, both variables 
refer to the same array.
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• If you actually want to copy all values of one array into a 
new array, use the copyOf method in the Arrays class.

• The second parameter is the length of the new array.

• A common use of this method is to increase the size of an array.

• The additional elements are filled with 0 if the array contains 
numbers, false if the array contains boolean values. 

• Conversely, if the length is less than the length of the original array, 
only the initial values are copied.

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers, 
luckyNumbers.length);

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers, 2 * 
luckyNumbers.length);
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• Every Java program has a main method with a “String[] 
args” parameter. 
• This parameter indicates that the main method receives an array of 

strings, namely, the arguments specified on the command line.

public class Message {

    public static void main(String[] args) {

        if (args.length == 0 || args[0].equals("-h"))

            System.out.print("Hello,");

        else if (args[0].equals("-g"))

            System.out.print("Goodbye,");

        // print the other command-line arguments

        for (int i = 1; i < args.length; i++)

             System.out.print(" " + args[i]);

        System.out.println("!");

    }

}
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• If you run the program as follows

• Then the args array has the following contents.
• args[0]: "-g"

• args[1]: "wonderful"

• args[2]: "world"

• The program prints the message:

> java Message -g wonderful world

> Goodbye, wonderful world!
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• Use Arrays.sort() method to sort the array via a tuned 
QuickSort algorithm.

import java.util.Arrays;

 

public class SortExample {

    public static void main(String[] args) {

        // Our arr contains 8 elements

        int[] arr = {13, 7, 6, 45, 21, 9, 101, 102};

        System.out.printf("Original arr[] : %s\n", Arrays.toString(arr));

        Arrays.sort(arr);

        System.out.printf("Modified arr[] : %s\n", Arrays.toString(arr));

    }

}

// Original arr[] : [13, 7, 6, 45, 21, 9, 101, 102]

// Modified arr[] : [6, 7, 9, 13, 21, 45, 101, 102]
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• They use more than one index to access array elements.
• Used for tables and other more complex arrangements.

• int[][] is an array of arrays or a two-dimensional array:

• You can initialize it without a call to new, if you know the elements:

• Use two indexes to access element:
• E.g., magicSquare[1][2] is 11.

int[][] magicSquare = {

   {16, 3, 2, 13},

   {5, 10, 11, 8},

   {9, 6, 7, 12},

   {4, 15, 14, 1}

};

int[][] magicSquare = new int[ROWS][COLUMNS]; // without initializer
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• A “for each” loop does not automatically loop through all 
elements in a two-dimensional array.

• Instead, it loops through the rows, which are themselves 
one-dimensional arrays.

• Try Arrays.deepToString() method:

for (int[] row : magicSquare) {

    for (int value : row) {

        System.out.print(value + " ");

    }

    System.out.println();

}

System.out.println(Arrays.deepToString(a));

// [[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]
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• Java has no multidimensional arrays at all, only one-
dimensional arrays. 
• Multidimensional arrays are faked as “arrays of arrays.”

• If the rows have different lengths, the array is “ragged” :

int[][] triangle = new int[5][];

for (int i = 0; i < 5; i++) {

    triangle[i] = new int[i+1];

}

System.out.println(Arrays.deepToString(triangle));

// [[0], [0, 0], [0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0, 0]]
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• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays
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