
U10M12004-OOP

Object Oriented
Programming

Chapter 3
Fundamental Programming
Structures in Java

Dr. Helei Cui

6 Mar 2025

Slides partially adapted from lecture
notes by Cay Horstmann

U10M12004-OOP

Recap

➢JDK, JRE, JVM?
• JDK is a software development kit
• JRE is a software bundle that allows Java program to run
• JVM is an environment for executing bytecode

➢Run HelloWorld.java
• Using Command-Line Tools

• Using an IDE, e.g., Eclipse

➢Use UML editor
➢Violet or diagrams.net

Dr. Helei Cui 2

JDK

JRE

JVM

U10M12004-OOP

Contents

Dr. Helei Cui 3

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

FirstSample.java

• “public”: access modifier
• Define the accessibility of a class.

• “class”: “a container for the program logic”
• Everything in a Java program must be inside a class.

• “FirstSample”: name of the class
• The file name for the source code must be the same as

the name of the public class, with “.java” appended.

Dr. Helei Cui 4

public class FirstSample {

 public static void main(String[] args) {

 System.out.println(“We will not use ‘Hello, World!’”);

 }

}

U10M12004-OOP

Rules for class names in Java

1. Names must begin with a letter, and after that, they can
have any combination of letters and digits.

2. The length is essentially unlimited.

3. Do not use a Java reserved word for a class name.
• E.g., public, class, static, void, etc.

4. The standard naming convention:
• Class names are nouns that start with an uppercase letter.

• Camel Case: If a name consists of multiple words, use an initial
uppercase letter in each of the words.

• E.g., HelloWorld, FirstSample.

Dr. Helei Cui 5

U10M12004-OOP

The braces { }

Dr. Helei Cui 6

public class FirstSample

{

 public static void main(String[] args)

 {

 System.out.println(“We will not use ‘Hello, World!’”);

 }

}

public class FirstSample {

 public static void main(String[] args) {

 System.out.println(“We will not use ‘Hello, World!’”);

 }

}

U10M12004-OOP

FirstSample.java

• The body of the main method contains a statement
that outputs a single line of text to the console.
• Here, we are using the System.out object and calling its
println method.

• The periods (“.”) are used to invoke a method.

• A method can have zero, one or more parameters (arguments).

• Parentheses are always needed even there is no parameters.
• E.g., System.out.println();

Dr. Helei Cui 7

public class FirstSample {

 public static void main(String[] args) {

 System.out.println(“We will not use ‘Hello, World!’”);

 }

}

U10M12004-OOP

Contents

Dr. Helei Cui 8

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

Comments

• Three types:
1. // Single-line comments

2. /* Multi-line Comments

 The second line of this comment */

3. /**

* This is used to generate documentation automatically

* @version 1.0 2021-03-19

* @author Harry Cui

*/

• Comments can be used to explain Java code, and to make it
more readable.

• Comments do not show up in the executable program.

Dr. Helei Cui 9

U10M12004-OOP

Contents

Dr. Helei Cui 10

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

Java is strongly typed

• All variable must be declared.
• <type> <variable>;

• E.g., int x;

• After a variable is declared, you can assign to it.
• E.g., x = 4;

• We call a variable which has a class for a type an object.
• E.g., Car c;

• Once an object is declared, you can
• assign to it, often with a creation statement,

• access its data members, and

• call its methods.

• E.g., c = new Car(“BMW”); c.make = “Audi”; c.getMake();

Dr. Helei Cui 11

U10M12004-OOP

3.3.1 Integer types

• For numbers without fractional parts.

• In Java, the ranges of the integer types do not depend on
the machine on which you will be running the Java code.

Dr. Helei Cui 12

Type Storage Range (Inclusive)

int 4 bytes -2,147,483,648 to 2,147,483,647 (just over 2 billion)

short 2 bytes -32,768 to 32,767

long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

byte 1 byte -128 to 127

U10M12004-OOP

Literals in Java

• A literal is a source code representation of a fixed value.
• They are represented directly in the code without any computation.

• Literals can be assigned to any primitive type variable.

• byte, int, long, and short can be expressed in decimal (base 10),
hexadecimal (base 16), octal (base 8) or binary (base 2) number
systems.

Dr. Helei Cui 13

byte a = 65;

int decimal = 100;

long num = 100L; // with suffix L or l

int octal = 0144; // with prefix 0

int hex = 0x64; // with prefix 0x or 0X

int bin = 0b1100100; // with prefix 0b or 0B

Data type Literal

U10M12004-OOP

3.3.2 Floating-point types

• For numbers with fractional parts.

• The name double refers to the fact that these numbers have
twice the precision of the float type.

Dr. Helei Cui 14

Type Storage Range

float 4 bytes
Approximately ±3.40282347E+38F (6-7 significant
decimal digits)

double 8 bytes
Approximately ±1.79769313486231570E+308 (15
significant decimal digits)

float fNum = 3.14F; // with suffix F or f

double dNum = 3.14D; // with suffix D or d (optionally)

U10M12004-OOP

Caution: round-off error

• Reason:
• Floating-point numbers are represented in the binary number

system. There is no precise binary representation of the fraction
1/10, just as there is no accurate representation of the fraction 1/3
in the decimal system.

• Solution:
• Using the BigDecimal class if you need precise numerical

computations.

Dr. Helei Cui 15

System.out.println(2.0 - 1.1); // result: 0.8999999999999999 not 0.9

System.out.println(BigDecimal.valueOf(2.0).subtract(BigDecimal.valueOf(1.1)));
// result: 0.9

U10M12004-OOP

3.3.3 The char type

• Used for describing individual characters.

• 'A' is a character constant with a value of 65.

• "A" is a string containing a single character.

Dr. Helei Cui 16

char ch = 'A';

char tm = '\u2122’; // Unicode for the trademark symbol ()

char ch1 = 'A';

char ch2 = '\u0041'; // Unicode for the character A

U10M12004-OOP

Escape sequences for special characters

• Escape sequence is a character preceded by a backslash (\)
and has a special meaning to the compiler.

Dr. Helei Cui 17

Escape Sequence Name Unicode Value

\b Backspace \u0008

\t Tab \u0009

\n Linefeed \u000a

\r Carriage return \u000d

\" Double quote \u0022

\' Single quote \u0027

\\ Backslash \u005c

System.out.println("She said \"Hello!\" to me.");

// output: She said "Hello!" to me.

Java backspace escape
doesn’t work?
https://stackoverflow.com/que
stions/3328824/java-
backspace-escape

U10M12004-OOP

3.3.4 Unicode and the char type

• Unicode is an information technology standard for the
consistent encoding, representation, and handling of text
expressed in most of the world's writing systems.
• It was invented to overcome the limitations of traditional character

encoding schemes.

• Before Unicode, there were many different standards: ASCII in the
United States, BIG-5 for Chinese, etc.

• See more on “Unicode Encoding! UTF-32, UCS-2, UTF-16, & UTF-8!”
https://www.youtube.com/watch?v=uTJoJtNYcaQ

Dr. Helei Cui 18

Strong recommendation:
Not to use the char type in your programs unless you are
actually manipulating UTF-16 code units. You are almost
always better off treating strings as abstract data types.

https://www.youtube.com/watch?v=uTJoJtNYcaQ

U10M12004-OOP

ASCII vs Unicode in Java (13 min)

Dr. Helei Cui 19

https://www.youtube.com/watch?v=61Bs7-ycL64

See more on https://www.youtube.com/watch?v=ut74oHojxqo

https://www.youtube.com/watch?v=ut74oHojxqo

U10M12004-OOP

3.3.5 The boolean type

• Used for evaluating logical conditions.
• Only two values: true or false

• No conversion between integers and Boolean values.

Dr. Helei Cui 20

boolean isJavaFun = true;

boolean isJavaBoring = false;

System.out.println(isJavaFun); // Outputs true

System.out.println(isJavaBoring); // Outputs false

// Boolean Expression

int x = 10;

int y = 9;

System.out.println(x > y); // Outputs true

U10M12004-OOP

Primitive vs reference

• Types in Java are divided into two categories - primitive
types and reference types.
• Primitive types: boolean, byte, char, short, int, long, float,
double.

• All other types are reference types, so classes, which specify the
types of objects, are reference types.

• A primitive-type variable can store exactly one value of its
declared type at a time.
• Primitive-type instance variables are initialized by default.

• Variables of types byte, char, short, int, long, float and
double are initialized to 0.

• Variables of type boolean are initialized to false.

• Reference-type variables (called references) store the
location (address) of an object in the computer’s memory.
• Such variables refer to objects.

Dr. Helei Cui 21

U10M12004-OOP

Primitive and Reference Types in Memory (5 min)

Dr. Helei Cui 22

https://www.youtube.com/watch?v=LTnp79Ke8FI

U10M12004-OOP

Contents

Dr. Helei Cui 23

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

Variables vs Constants

• A constant is a data item whose value cannot
change during the program’s execution.
• Thus, as its name implies - the value is constant.

• A variable is a data item whose value can change
during the program’s execution.
• Thus, as its name implies - the value can vary.

Dr. Helei Cui 24

https://byjus.com/maths/variables-and-constants-in-algebraic-expressions/

U10M12004-OOP

3.4.1 Declaring variables

• General form: type variableName;

• A variable name must begin with a letter and must
be a sequence of letters or digits.
• letter: 'A'–'Z', 'a'–'z', '_', '$', or any Unicode

character that denotes a letter in a language.

• digit: '0'–'9' and any Unicode characters that denote a digit in a
language.

• Symbols like '+' or '©' cannot be used inside variable names, nor
can spaces.

• Case-sensitive, e.g., "aNum" and "ANum" are different.

Dr. Helei Cui 25

double salary;

long earthPopulation;

boolean done;

int i, j; // correct but not recommended

U10M12004-OOP

3.4.2 Initializing variables

• You must explicitly initialize it by means of an
assignment statement.
• You can never use the value of an uninitialized variable.
• Otherwise, you would see an ERROR, “variable not

initialized”.

• Using an equal sign =

• Good style: declare variables as closely as possible
to the point where they are first used.

Dr. Helei Cui 26

int vacationDays;

vacationDays = 12;

int vacationDays = 12; // correct but not recommended

U10M12004-OOP

Local type inference in Java 10

• Can use var instead type for local variables:

• Still strongly typed:

• Useful for unwieldy type names:

Dr. Helei Cui 27

var counter = 0; // an int

var message = "Greetings, earthlings!"; // a String

counter = 0.5; // Error: can’t assign a double to an int

var traces = Thread.getAllStackTraces(); // a Map<Thread,
StackTraceElement[]>

U10M12004-OOP

3.4.3 Constants

• Using final to denote a constant.

• Good style: name it in all uppercase with words
separated by underscores ("_").

Dr. Helei Cui 28

final double PI = 3.14;

final int VACATION_DAYS = 12;

U10M12004-OOP

Class constants

• Using static final to create a constant so it’s
available to multiple methods inside a single class.

• If the constant is declared public, other classes
can use it like Constants2.CM_PER_INCH.

Dr. Helei Cui 29

public class Constants2 {

 public static final double CM_PER_INCH = 2.54;

 public static void main(String[] args) {

 double paperWidth = 8.5;

 System.out.println("Paper width in centimeters: "

 + paperWidth * CM_PER_INCH);

 }

}

U10M12004-OOP

3.4.4 Enumerated types

• To describe a variable that only hold a restricted set
of values.
• E.g., sizes of pizza: small, medium, large, and extra large.
• Only a finite number of named values.

• Variable of type s can only hold size values or null.

Dr. Helei Cui 30

public class Example {

 enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

 public static void main(String[] args) {

 // Now you can declare variables of this type:

 Size s = Size.MEDIUM;

 System.out.println(s); // Outputs: MEDIUM

 }

}

U10M12004-OOP

Contents

Dr. Helei Cui 31

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

3.5.1 Arithmetic operators

• The usual arithmetic operators:
• Addition +

• Subtraction -

• Multiplication *

• Division /
• Integer division if both arguments are integers, and

floating-point division otherwise.

• E.g., 15 / 2 is 7, 15.0 / 2 is 7.5.

• Integer remainder (a.k.a., modulus) %
• E.g., 15 % 2 is 1.

Dr. Helei Cui 32

U10M12004-OOP

Quick question 1

-7 % 3 = ?

A. 1

B. -1

C. -2

7 % -3 = ?

A. 1

B. -1

C. -2

Dr. Helei Cui 33

U10M12004-OOP

% in Java

7 % 3 = 1

-7 % 3 = ?

7 % -3 = ?

• Using the formula a % b = a – a / b * b, you can get

7 % 3 = 7 – 7 / 3 * 3 = 7 – 2 * 3 = 1

-7 % 3 = -7 – (-7) / 3 * 3 = -7 – (-2) * 3 = -1

7 % -3 = 7 – 7 / (-3) * (-3) = 7 – (-2) * (-3) = 1

Dr. Helei Cui 34

U10M12004-OOP

Division /

• In Python, the integer division uses “floor function”:
-7 % 3 = -7 - floor(-7 / 3) * 3 = -7 - (-3) * 3 = -7 + 9 = 2

7 % (-3) = 7 - floor(7 / (-3)) * (-3) = 7 - (-3) * (-3) = 7 - 9 = -2

The floor function takes as input a real number x, and gives as output the
greatest integer less than or equal to x, denoted floor(x).

• In Java or C, the integer division uses “truncation”:
-7 % 3 = -7 - trunc(-7 / 3) * 3 = -7 - (-2) * 3 = -7 + 6 = -1

7 % (-3) = 7 - trunc(7 / (-3)) * (-3) = 7 - (-2) * (-3) = 7 - 6 = 1

For positive real numbers, truncation is done using the floor function. But
for negative numbers, truncation always rounds towards zero.

Dr. Helei Cui 35

U10M12004-OOP

Quick question 2

How to get the ones, tens, hundreds, and thousands digit in
the number 1,234?

x/1000 ---> thousands digit

x%10 ---> ones digit

x/10%10 ---> tens digit

x/100%10 ---> hundreds digit

Dr. Helei Cui 36

U10M12004-OOP

3.5.2 Mathematical functions and constants

• The Math class contains methods for performing basic
numeric operations and constants π and e.
• E.g., the elementary exponential, logarithm, square root, and

trigonometric functions.

Dr. Helei Cui 37

The println method operates on the System.out object.
But the sqrt method in the Math class does not operate on
any object, which is called a static method.

double x = 4;

double y = Math.sqrt(x);

System.out.println(y); // prints 2.0

System.out.println(Math.PI); // prints 3.141592653589793

System.out.println(Math.E); // prints 2.718281828459045

U10M12004-OOP

3.5.3 Conversions between numeric types

• These conversions are automatic:

Dr. Helei Cui 38

Dotted arrows indicate
possible precision loss.

int n = 123456789;

float f = n; // f is 1.23456792E8

U10M12004-OOP

Rules

• When two values are combined with a binary operator (such
as n + f where n is an integer and f is a floating-point
value), both operands are converted to a common type
before the operation is carried out.
• If either of the operands is of type double, the other one will be

converted to a double.

• Otherwise, if either of the operands is of type float, the other one
will be converted to a float.

• Otherwise, if either of the operands is of type long, the other one
will be converted to a long.

• Otherwise, both operands will be converted to an int.

Dr. Helei Cui 39

U10M12004-OOP

3.5.4 Casts

• Conversions in which loss of information is possible are
done by means of casts.
• The syntax for casting is to give the target type in parentheses,

followed by the variable name.

• Use the Math.round method to round a floating-point number to
the nearest integer.

Dr. Helei Cui 40

double x = 9.997;

int nx = (int) x; // nx is 9

double x = 9.997;

int nx = (int) Math.round(x); // nx is 10

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html

U10M12004-OOP

Caution

• If you try to cast a number of one type to another that is out
of range for the target type, the result will be a truncated
number that has a different value.

• The number 300 in binary form is 100101100, then byte
type only gets 8 digits. So, the x only gets 00101100, i.e., 44.

Dr. Helei Cui 41

byte x = (byte) 300;

System.out.println(x); // Outputs 44

U10M12004-OOP

3.5.5 Combining assignment with operators

• “x += 4;” is equivalent to “x = x + 4;”

• Also -=, *=, /=, %=, and so on.

• Note:
• If the operator yields a value whose type is different

from that of the left-hand side, then it is enforced to fit.

Dr. Helei Cui 42

int x = 1;

x += 3.5; // Equivalent to x = (int)(x + 3.5)

System.out.println(x); // Outputs 4

U10M12004-OOP

3.5.6 Increment and decrement operators

• ++ and --
• Postfix form: m++ adds 1 to the current value of the

variable m, and m-- subtracts 1 from it.

• Prefix form: ++m and --m.

Dr. Helei Cui 43

int m = 4, n;

n = ++m; // m = m + 1; n = m; --> n and m are 5

n = --m; // m = m – 1; n = m; --> n and m are 3

n = m++; // n = m; m = m + 1; --> n is 4, m is 5

n = m--; // n = m; m = m – 1; --> n is 4, m is 3

U10M12004-OOP

Quick question 3

int m = 5; System.out.println(m++);

A. Outputs 5

B. Outputs 6

C. Outputs 7

int m = 5; System.out.println(--m);

A. Outputs 3

B. Outputs 4

C. Outputs 5

Dr. Helei Cui 44

We recommend against using ++ (or --) inside expressions
because this often leads to confusing code and annoying bugs.

int m = 5;

m++;

System.out.println(m);

int m = 5;

--m;

System.out.println(m);

U10M12004-OOP

3.5.7 Relational and boolean Operators

• Relational operators:
• == (equality test) != (inequality test)

• < (less than) <= (less than or equal)

• > (greater than) >= (greater than or equal)

• Boolean operators:
• && (logical and) || (logical or) ! (logical not)

• E.g., expression1 && expression2

• If the truth value of the first expression has been determined to be
false, then it is impossible for the result to be true. Thus, the value
for the second expression is not calculated.

Dr. Helei Cui 45

x != 0 && 1 / x > x + y

// The second part is never evaluated if x equals zero.

// Thus, 1/x is not computed if x is zero, and no divide-by-zero

// error can occur.

U10M12004-OOP

Truth table

• A truth table is a mathematical table used in logic.

Dr. Helei Cui 46

!x x&&y X||y

U10M12004-OOP

The ternary ?: operator

• condition ? expression1 : expression2

• It evaluates to the first expression if the condition is
true, to the second expression otherwise.

Dr. Helei Cui 47

int a = 10;

int b = 20;

int max = a >= b ? a : b;

U10M12004-OOP

3.5.8 Bitwise Operators

• & (bitwise and) | (bitwise or) ^ (bitwise xor) ~ (bitwise
compliment)

• These operators work on bit patterns.
• E.g., int fourthBitFromRight = (n & 0b1000) / 0b1000;

• It gives you a 1 if the fourth bit from the right in the binary
representation of n is 1, and 0 otherwise.

• Using & with the appropriate power of 2 lets you mask out all but a
single bit.

• When applied to boolean values, the two bitwise operators
(& and |) also returns a boolean value.
• These operators are like the logical operators (&& and ||), except

that the bitwise operators (& and |) are not evaluated in “short
circuit” fashion - that is, both arguments are evaluated before the
result is computed.

Dr. Helei Cui 48

U10M12004-OOP

3.5.8 Bitwise Operators

• >> (right shift) << (left shift)

• They shift a bit pattern right or left.
• Assuming A is 60 (0011 1100), then

• A << 2 will give 240 which is 1111 0000

• A >> 2 will give 15 which is 1111

• E.g., int fourthBitFromRight = (n & (1 << 3)) >> 3;

• >>> (zero fill right shift)

• It fills the top bits with zero, unlike >> which
extends the sign bit into the top bits.
• Assuming A is 60 (0011 1100), then

• A >>>2 will give 15 which is 0000 1111

Dr. Helei Cui 49

U10M12004-OOP

Quick question 4

Dr. Helei Cui 50

int A = 60;

int B = A >> 2;

int C = A >>> 2;

System.out.println("A = " + A + " in binary: " +
Integer.toBinaryString(A));

System.out.println("B = " + B + " in binary: " +
Integer.toBinaryString(B));

System.out.println("C = " + C + " in binary: " +
Integer.toBinaryString(C));

// output

A = 60 in binary: 111100

B = 15 in binary: 1111

C = 15 in binary: 1111

U10M12004-OOP

Quick question 5

Dr. Helei Cui 51

int A = -60;

int B = A >> 2;

int C = A >>> 2;

System.out.println("A = " + A + " in binary: " +
Integer.toBinaryString(A));

System.out.println("B = " + B + " in binary: " +
Integer.toBinaryString(B));

System.out.println("C = " + C + " in binary: " +
Integer.toBinaryString(C));

// output

A = -60 in binary: 11111111111111111111111111000100

B = -15 in binary: 11111111111111111111111111110001

C = 1073741809 in binary: 111111111111111111111111110001

U10M12004-OOP

Two’s complement (4 min)

Dr. Helei Cui 52

https://www.youtube.com/watch?v=Z3mswCN2FJs

U10M12004-OOP

3.5.9 Parentheses and Operator Hierarchy

• If no parentheses are used, operations are performed in the hierarchical
order indicated.

• Operators on the same level are processed from left to right, except for
those that are right-associative.

Dr. Helei Cui 53

Operators Associativity

[] . () (method call) Left to right

! ~ ++ -- + (unary) - (unary) () (cast) new Right to left

+ - * / % Left to right

<< >> >>> Left to right

< <= > >= instanceof Left to right

== != Left to right

& | ^ && || Left to right

?: Right to left

= += -= *= /= %= &= |= ^= <<= >>= >>>= Right to left

U10M12004-OOP

Contents

Dr. Helei Cui 54

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

Strings in Java

Dr. Helei Cui 55

• Sequences of Unicode characters.
• E.g., "Java\u2122" consists of the five Unicode characters J, a, v,
a, and .

• Java does not have a built-in string type. Instead, the
standard Java library has a predefined String class.
• String literals enclosed in double quotes " " .

• Each quoted string is an instance of the String class.

String e = ""; // an empty string

String greeting = "Hello"; // a string consisting of "Hello"

U10M12004-OOP

3.6.1 Substrings

Dr. Helei Cui 56

• You can extract a substring from a larger string with the
substring method of the String class.

• The second parameter of substring is the first position that
you do not want to copy.
• In the above example, it means from position 0 inclusive to position

3 exclusive.

• The string s.substring(a, b) always has length b - a.
• E.g., the substring "Hel" has length 3 - 0 = 3.

String greeting = "Hello";

String s = greeting.substring(0, 3); // s is "Hel"

U10M12004-OOP

3.6.2 Concatenation

Dr. Helei Cui 57

• You can use + to join (concatenate) two strings.

• No space between the words: The + operator joins two
strings in the order received, exactly as they are given.

• When you concatenate a string with a value that is not a
string, the latter is converted to a string.
• Every Java object can be converted to a string!

String firstName = "Harry";

String lastName = "Cui";

String fullName = firstName + lastName; // "HarryCui"

int age = 16;

String rating = "PG" + age; // "PG16"

System.out.println("Age is " + age); // outputs "Age is 16"

U10M12004-OOP

3.6.2 Concatenation

Dr. Helei Cui 58

• If you need to put multiple strings together, separated by a
delimiter, use the static join method:

• As of Java 11, there is a repeat method:

String all = String.join(" / ", "S", "M", "L", "XL");

// all is the string "S / M / L / XL"

String repeated = "Java".repeat(3);

// repeated is "JavaJavaJava"

U10M12004-OOP

3.6.3 Strings are immutable

Dr. Helei Cui 59

• The String class gives no methods that let you change a
character in an existing string!
• The objects of the String class are immutable.

String greeting = "Hello";

greeting = "Help"; // greeting = greeting.substring(0, 3) + "p";

Changing the contents of a String variable will make it refer
to a different string.

U10M12004-OOP

3.6.4 Test strings for equality

Dr. Helei Cui 60

• To test whether two strings are equal, use the equals
method, i.e., s.equals(t).
• Returns true if the strings s and t are equal, false otherwise.

• The strings s and t can be string variables or string literals.

• To test whether two strings are identical except for the
upper/lowercase letter distinction, use
equalsIgnoreCase method.

• Do not use the == operator, which only test if the strings are
stored in the same location.

"Hello".equals(greeting);

"Hello".equalsIgnoreCase(greeting);

String str = "Hello";

System.out.println("Hello" == str);

U10M12004-OOP

The == operator?

Dr. Helei Cui 61

• Do not use the == operator, which only test if the strings are
stored in the same location.

• If the virtual machine always arranges for equal strings to be
shared, then you could use the == operator for testing
equality.
• But only string literals are shared, not strings that are the result of

operations like + or substring.

String str = "Hello";

System.out.println("Hello"== str); // Outputs true

String str2 = "Helloabc".substring(0,5);

System.out.println(str == str2); // false

System.out.println(str.equals(str2)); // true

U10M12004-OOP

3.6.5 Empty and null strings

Dr. Helei Cui 62

• The empty string "" is a string of length 0.
• if (str.length() == 0)

• if (str.equals(""))

• An empty string is a Java object which holds the string
length (namely, 0) and an empty contents.

• However, a String variable can also hold a special value,
called null, that indicates that no object is currently
associated with the variable.
• if (str == null)

• So, when you want to test if str is neither null nor empty.

if (str != null && str.length() != 0)

U10M12004-OOP

3.6.6 Code points and code units

Dr. Helei Cui 63

• Java strings are sequences of char values.
• The char data type is a code unit for representing Unicode code points in the

UTF-16 encoding.
• The most commonly used Unicode characters can be represented with a single

code unit.
• The supplementary characters require a pair of code units.

• s.length() is the number of code units (not Unicode characters,
which means code unit size is 8 bits, just for simplicity, this method
counts the number of characters in string s).

• s.charAt(i) is the ith code unit.

• To get the ith code point:

• To get all code points:

int index = s.offsetByCodePoints(0, i);

int cp = s.codePointAt(index); // returns the Unicode value
of the character at the specified index in a string.

int[] codePoints = str.codePoints().toArray();

U10M12004-OOP

3.6.7 The String API

Dr. Helei Cui 64

• Many other useful String methods.

• trim() yields a new string, trimming leading and trailing
white space.

• toLowerCase() yields a new string that converts all
uppercase characters to lowercase.

• indexOf(), lastIndexOf() find the location of a
substring.

• Check out the online API documentation.

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/String.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/String.html

U10M12004-OOP

3.6.9 Building strings

Dr. Helei Cui 65

• The StringBuilder class is to build up strings from shorter
strings, such as keystrokes or words from a file.
• Using string concatenation is inefficient because every time you

concatenate strings, a new String object is constructed.

StringBuilder builder = new StringBuilder();

builder.append("This ");

builder.append("is ");

builder.append("a ");

builder.append("message.");

String completedString = builder.toString();

System.out.println(completedString);

U10M12004-OOP

StringBuilder vs StringBuffer

Dr. Helei Cui 66

• The APIs of both classes are identical.

StringBuffer StringBuilder

Thread-Safe Not Thread-Safe

Synchronized Not Synchronized

Since Java 1.0 Since Java 1.5

Slower Faster

https://www.techyourchance.com/wp-content/uploads/2016/11/observer-thread-synchronization.jpg

U10M12004-OOP

Contents

Dr. Helei Cui 67

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

3.7.1 Reading Input

Dr. Helei Cui 68

• To read console input, you first construct a Scanner that is
attached to System.in.

• Now you can use the various methods of the Scanner class.

Scanner in = new Scanner(System.in);

System.out.print("What is your name? ");

String name = in.nextLine(); // reads a line of input

String firstName = in.next(); // reads a single word

System.out.print("How old are you? ");

int age = in.nextInt(); // reads an integer

U10M12004-OOP

InputTest.java

Dr. Helei Cui 69

import java.util.*;

public class InputTest {

 public static void main(String[] args) {

 Scanner in = new Scanner(System.in);

 // get first input

 System.out.print("What is your name? ");

 String name = in.nextLine();

 // get second input

 System.out.print("How old are you? ");

 int age = in.nextInt();

 // display output on console

 System.out.println("Hello, " + name + ". Next year,
you'll be " + (age + 1));

 }

}

U10M12004-OOP

Reading password

Dr. Helei Cui 70

• The Scanner class is not suitable for reading a password
from a console since the input is plainly visible to anyone.
Java 6 introduces a Console class specifically for this
purpose.

• To read a password, use the following code:

• Input processing with a Console object is not as
convenient as with a Scanner.
• You must read the input a line at a time.

• There are no methods for reading individual words or numbers.

• May not be available in you IDE.

Console cons = System.console();

String username = cons.readLine("User name: ");

char[] passwd = cons.readPassword("Password: ");

U10M12004-OOP

3.7.2 Formatting output

Dr. Helei Cui 71

• This is a problem if you want to format your output, just like
the printf() in C.
• Fortunately, Java 5 brought back this useful method.

• You can also supply multiple parameters to printf().

double x = 10000.0 / 3.0;

System.out.print(x); // Outputs 3333.3333333333335

System.out.printf("%8.2f", x); // Outputs " 3333.33"

System.out.printf("Hi, %s. You'll be %d", name, age);

U10M12004-OOP

Conversions for printf()

Dr. Helei Cui 72

• Each of the format specifiers that start with a % character is
replaced with the corresponding argument.
• The conversion character that ends a format specifier indicates the

type of the value to be formatted.

• E.g., f is a floating-point number, s a string, and d a decimal integer.

Conversion Character Type Example

d Decimal integer 200

x Hexadecimal integer c8

o Octal integer 310

f
Fixed-point floating

point
15.9

e
Exponential floating-

point
1.59e+01

s String Hello

U10M12004-OOP

Flags and String.format()

Dr. Helei Cui 73

• You can also specify flags that control the appearance of the
formatted output.
• E.g., the comma flag adds group separators.

• Using String.format() to create a formatted string
without printing it.

System.out.printf("%,.2f", 10000.0 / 3.0); // Outputs 3,333.33

String msg = String.format("Hi, %s. You'll be %d", name, age);

U10M12004-OOP

3.7.3 File input and output

Dr. Helei Cui 74

• To read from a file, construct a Scanner object like this:

• If the file name contains backslashes, remember to escape each of
them with an additional backslash.

• E.g., "c:\\mydirectory\\myfile.txt".

• Then you can use the Scanner method to read lines or integers.

Scanner in = new Scanner(Path.of("myfile.txt"),
StandardCharsets.UTF_8);

String msg = in.nextLine();

System.out.println(msg);

U10M12004-OOP

3.7.3 File input and output

Dr. Helei Cui 75

• To write to a file, construct a PrintWriter object.

• If the file does not exist, it is created.

• Then you can use the print, println, and printf commands as
you did when printing to System.out.

PrintWriter out = new PrintWriter("myfile.txt",
StandardCharsets.UTF_8);

out.println("This is a new string!");

out.close();

U10M12004-OOP

Using buffered writer/reader (6 min)

Dr. Helei Cui 76

https://www.youtube.com/watch?v=hgF21imQ_Is

U10M12004-OOP

Why BufferedReader/BufferedWriter

Dr. Helei Cui 77

• It is recommended to use buffered I/O streams as opposed
to Scanner and PrintWriter classes:
• They have significantly larger buffer memory than Scanner and
PrintWriter. It is recommended to use BufferedReader if you
want to get long strings from a stream, and use Scanner if you
want to parse specific type of token from a stream.

• Buffered Streams are synchronous while unbuffered are not. This
means you can work with multiple threads when using Buffered
Streams.

• Scanner is memory and CPU heavy when compared to
BufferedReader because it internally uses “regular expressions”
for matching your “nextXXX()” as opposed to just reading
everything till the end of line as in the case of a regular Reader.

• BufferedReader is a bit faster as compared to Scanner.

• See more https://medium.com/@isaacjumba/why-use-
bufferedreader-and-bufferedwriter-classses-in-java-39074ee1a966

https://medium.com/@isaacjumba/why-use-bufferedreader-and-bufferedwriter-classses-in-java-39074ee1a966
https://medium.com/@isaacjumba/why-use-bufferedreader-and-bufferedwriter-classses-in-java-39074ee1a966

U10M12004-OOP

Contents

Dr. Helei Cui 78

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

3.8.1 Block scope

Dr. Helei Cui 79

• A block, or compound statement, consists of a number of
Java statements, surrounded by a pair of braces.
• Blocks define the scope of your variables. A block can be nested

inside another block.

public static void main(String[] args) {

 int n;

 . . .

 {

 int k;

 . . .

 } // k is only defined up to here

}

U10M12004-OOP

3.8.1 Block scope

Dr. Helei Cui 80

• You may not declare identically named variables in two
nested blocks.

public static void main(String[] args) {

 int n;

 . . .

 {

 int k;

 int n; // ERROR – can’t redefine n in inner block

 . . .

 }

}

U10M12004-OOP

3.8.2 Conditional Statements

Dr. Helei Cui 81

• if (condition) statement
• The condition must be surrounded by

parentheses.

• For multiple statements, you should use
a block.

if (yourSales >= target) {

 performance = "Satisfactory";

 bonus = 100;

}

U10M12004-OOP

if/else statement

Dr. Helei Cui 82

• if (condition) statement1 else statements
• The condition must be surrounded by parentheses.

• For multiple statements, you should use a block.

if (yourSales >= target) {

 performance = "Satisfactory";

 bonus = 100 + 0.01 * (yourSales - target);

} else {

 performance = "Unsatisfactory";

 bonus = 0;

}

It is a good idea to use braces “{}” to clarify the structure.

U10M12004-OOP

else if statement

Dr. Helei Cui 83

• if ... else if ...

if (yourSales >= 2*target) {

 // ...

} else if (yourSales >= 1.5*target) {

 // ...

} else if (yourSales >= target) {

 // ...

} else {

 // ...

}

U10M12004-OOP

3.8.3 Loops

Dr. Helei Cui 84

• while (condition) statement
• Executes a statement (which may be a block statement) while a

condition is true.

• Tests the condition at the top. So the code in the block might never
be executed.

class WhileDemo {

 public static void main(String[] args){

 int count = 1;

 while (count < 11) {

 System.out.println("Count is: " + count);

 count++;

 }

 }

}

U10M12004-OOP

3.8.3 Loops

Dr. Helei Cui 85

• do statement while (condition);
• Ensures that a statement of a block is executed at least once.

• If the condition is true, it repeats the statement and retests the
condition, and so on.

class DoWhileDemo {

 public static void main(String[] args){

 int count = 1;

 do {

 System.out.println("Count is: " + count);

 count++;

 } while (count < 11);

 }

}

U10M12004-OOP

3.8.4 Determinate loops

Dr. Helei Cui 86

• The for loop is a general construct to
support iteration controlled by a
counter or similar variable that is
updated after every iteration.

for (int i = 1; i <= 10; i++) {

System.out.println(i);

}

U10M12004-OOP

for (int i = 1; i <= 10; i++) {

System.out.println(i);

}

for loop

Dr. Helei Cui 87

• The first slot (int i = 1;) of the for statement usually
holds the counter initialization.

• The second slot (i <= 10;) gives the condition that will be
tested before each new pass through the loop.

• The third slot (i++) specifies how to update the counter.

Unwritten rule: the three slot should only initialize, test, and
update the same counter variable.

U10M12004-OOP

for (double x = 0; x != 10; x += 0.1) {

System.out.println(x);

}

Caution

Dr. Helei Cui 88

• This might never stop!

• Because of roundoff errors, the final value might not be
reached exactly.
• In this example, x jumps from 9.99999999999998 to

10.09999999999998 because there is no exact binary
representation for 0.1.

Be careful with testing for equality of floating-point numbers
in loops.

U10M12004-OOP

for (int i = 1; i <= 10; i++) {

System.out.println(i);

} // i no longer defined here

Variable scope in for loop

Dr. Helei Cui 89

int i;

for (i = 1; i <= 10; i++) {

System.out.println(i);

} // i is still defined here

for (int i = 1; i <= 10; i++) {

...

}

for (int i = 1; i <= 10; i++) { // This is OK

...

}

U10M12004-OOP

for (int i = 10; i > 0; i--) {

System.out.println("Counting down . . . " + i);

}

for loop and while loop

Dr. Helei Cui 90

int i = 10;

while (i > 0) {

System.out.println("Counting down . . . " + i);

i--;

}

• A for loop can be viewed as a convenient shortcut for a
while loop.

U10M12004-OOP

3.8.4 Multiple selections

Dr. Helei Cui 91

• switch statement
• Deals with multiple selections with many

alternatives.

Scanner in = new Scanner(System.in);

System.out.print("Select an option (1, 2,
3, 4) ");

int choice = in.nextInt();

switch (choice) {

 case 1: . . . break;

 case 2: . . . break;

 case 3: . . . break;

 case 4: . . . break;

 default: // bad input

 . . . break;

}

U10M12004-OOP

Caution

Dr. Helei Cui 92

• When there is no “break;”, execution will fall through to
the next alternative!

int num = 2;

switch (num) {

 case 1:

 System.out.print("One");

 case 2:

 System.out.print("Two");

 case 3:

 System.out.print("Three");

 default:

 System.out.print("Others");

}

// Outputs TwoThreeOthers

U10M12004-OOP

The case label

Dr. Helei Cui 93

• A case label can be:
• A constant expression of type char, byte, short, or int;

• An enumerated constant;

• Starting with Java 7, a string literal.

String input = . . .;

switch (input.toLowerCase()) {

 case "yes": // OK since Java 7

 ...

}

Size sz = . . .;

switch (sz) {

 case SMALL: // no need to use Size.SMALL

 ...

}

U10M12004-OOP

3.8.5 Statements that break control flow

Dr. Helei Cui 94

• break statement
• Used to “jump out” of a switch statement.

• Can also be used to jump out of a loop.

for (int i = 0; i < 10; i++) {

if (i == 4) {

break;

}

System.out.print(i);

}

// Outputs 0123

U10M12004-OOP

3.8.5 Statements that break control flow

Dr. Helei Cui 95

• continue statement
• Used to break one iteration (in the loop), if a specified condition

occurs, and continues with the next iteration in the loop.

for (int i = 0; i < 10; i++) {

if (i == 4) {

continue;

}

System.out.print(i);

}

// Outputs 012356789

U10M12004-OOP

Quick question 6

Write a Java program to check whether a number is a prime or not.

• A prime number is a number which is divisible by only two numbers: 1 and itself.

• So, if any number is divisible by any other number, it is not a prime number.

• E.g., 29 is a prime number, 33 is not a prime number.

Dr. Helei Cui 96

U10M12004-OOP Dr. Helei Cui 97

import java.util.Scanner;

public class CheckPrime {

public static void main(String[] args) {

System.out.print("Please input an integer: ");

Scanner in = new Scanner(System.in);

int num = in.nextInt();

boolean flag = false;

for (int i = 2; i <= num / 2; ++i) {

if (num % i == 0) { // condition for non-prime number

flag = true;

break;

}

}

if (!flag) {

System.out.println(num + " is a prime number.");

} else {

System.out.println(num + " is not a prime number.");

}

}

}

U10M12004-OOP

Contents

Dr. Helei Cui 98

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

3.9 Big numbers

Dr. Helei Cui 99

• The precision of the basic integer and floating-point types
is not sufficient!

• Solution: the java.math package has classes for dealing
with numbers with an arbitrarily long sequence of digits.
• BigInteger implements arbitrary-precision integer arithmetic.

• BigDecimal does the same for floating-point numbers.

• Use the static valueOf method to turn a number into a big number.

BigInteger a = BigInteger.valueOf(100);

BigDecimal b = BigDecimal.valueOf(2.0);

// You can also use a constructor with a string parameter

BigInteger c = BigInteger.valueOf("12345678901234567890");

U10M12004-OOP

BigInteger

Dr. Helei Cui 100

• There are also constants:
• BigInteger.ZERO

• BigInteger.ONE

• BigInteger.TEN

• BigInteger.TWO (since Java 9)

• You cannot use the familiar mathematical operators like +, -,
*, /, % to combine big numbers.
• Use add, subtract, multiply, divide, mod methods.

BigInteger a = BigInteger.valueOf(100);

BigInteger b = BigInteger.valueOf(200);

BigInteger c = a.add(b); // c = a + b

BigInteger d = c.multiply(b.add(BigInteger.valueOf(2)));

// d = c * (b + 2)

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/math/BigDecimal.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/math/BigDecimal.html

U10M12004-OOP

Contents

Dr. Helei Cui 101

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

U10M12004-OOP

3.10.1 Declaring arrays

Dr. Helei Cui 102

• An array is a data structure that stores a collection of values
of the same type.
• Specify the array type (that is the element type followed by []) and

the array variable name, e.g., int[] a.
• However, this only declares the variable a, not yet initialized with an

actual array.

• Use the new operator to initialize, e.g., a = new int[100].
• The array length need not be a constant, e.g., new int[n];

• But you cannot change its length once you create it.

int[] a = new int[100]; // declares and initializes an array

int n = 100;

int[] b = new int[n]; // the length is n

U10M12004-OOP

3.10.1 Declaring arrays

Dr. Helei Cui 103

• When you create an array of numbers (e.g., int, double),
all elements are initialized with zero.

• Arrays of boolean are initialized with false.

• Arrays of objects are initialized with the special value null,
which indicates that they do not (yet) hold any objects.

String[] names = new String[5]; // strings are all null

null null null null null

names

Index 0 1 2 3 4
String[] array

reference

String[] array object

Heap memory

U10M12004-OOP

3.10.1 Declaring arrays

Dr. Helei Cui 104

• You can create an array object and supplying initial values
without using the new operator and specifying the length.

• Anonymous array:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

String[] authors = {

 "James Gosling",

 "Bill Joy",

 "Guy Steele",

 // add more names here and put a comma after each name

};

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

// is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };

smallPrimes = anonymous;

U10M12004-OOP

Empty array

Dr. Helei Cui 105

• It is legal to have arrays of length 0.
• It is useful if you write a method that computes an array result, and

the result happens to be empty.

• Construct an empty array:
• E.g., new elementType[0] or new elementType[] {}.

Note that an array of length 0 is not the same as null.

U10M12004-OOP

3.10.2 Accessing array elements

Dr. Helei Cui 106

• Access an array element via an integer index, e.g., a[i].
• The array elements are numbered from 0 to length-1.

• Accessing a[length] causes an “array index out of bounds” exception.

• You can use a loop to fill the elements in an array.

int[] a = new int[100];

for (int i = 0; i < 100; i++) {

 a[i] = i; // fills the array with numbers 0 to 99

}

for (int i = 0; i < 10; i++) names[i] = "";

for (int i = 0; i < a.length; i++) { // uses array.length

System.out.println(a[i]);

}

U10M12004-OOP

3.10.3 The “for each” loop

Dr. Helei Cui 107

• for (variable : collection) statement
• Sets the given variable to each element of the collection and then

executes the statement (which, of course, may be a block).

• The collection expression must be an array or an object of a class
that implements the Iterable interface, such as ArrayList.

• You can read this loop as “for each element in a”.

for (int element : a) {

 System.out.println(element);

} // looks more concise and less error-prone

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

} // a traditional for loop achieves the same effect

U10M12004-OOP

Output an array

Dr. Helei Cui 108

• There is an even easier way to print all values of an array,
using the toString method of the Arrays class.

• The call Arrays.toString(a) returns a string containing
the array elements, enclosed in brackets and separated by
commas, such as "[2, 3, 5, 7, 11, 13]".

int[] a = new int[] { 1, 2, 3, 4, 5, 6 };

System.out.println(Arrays.toString(a));

// [1, 2, 3, 4, 5, 6]

U10M12004-OOP

3.10.4 Array copying

Dr. Helei Cui 109

int[] luckyNumbers = smallPrimes;

luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

When copy one array variable into another, both variables
refer to the same array.

U10M12004-OOP

Copy all values into a new array

Dr. Helei Cui 110

• If you actually want to copy all values of one array into a
new array, use the copyOf method in the Arrays class.

• The second parameter is the length of the new array.

• A common use of this method is to increase the size of an array.

• The additional elements are filled with 0 if the array contains
numbers, false if the array contains boolean values.

• Conversely, if the length is less than the length of the original array,
only the initial values are copied.

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers,
luckyNumbers.length);

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers, 2 *
luckyNumbers.length);

U10M12004-OOP

3.10.5 Command-line parameters

Dr. Helei Cui 111

• Every Java program has a main method with a “String[]
args” parameter.
• This parameter indicates that the main method receives an array of

strings, namely, the arguments specified on the command line.

public class Message {

 public static void main(String[] args) {

 if (args.length == 0 || args[0].equals("-h"))

 System.out.print("Hello,");

 else if (args[0].equals("-g"))

 System.out.print("Goodbye,");

 // print the other command-line arguments

 for (int i = 1; i < args.length; i++)

 System.out.print(" " + args[i]);

 System.out.println("!");

 }

}

U10M12004-OOP

3.10.5 Command-line parameters

Dr. Helei Cui 112

• If you run the program as follows

• Then the args array has the following contents.
• args[0]: "-g"

• args[1]: "wonderful"

• args[2]: "world"

• The program prints the message:

> java Message -g wonderful world

> Goodbye, wonderful world!

U10M12004-OOP

3.10.6 Array sorting

Dr. Helei Cui 113

• Use Arrays.sort() method to sort the array via a tuned
QuickSort algorithm.

import java.util.Arrays;

public class SortExample {

 public static void main(String[] args) {

 // Our arr contains 8 elements

 int[] arr = {13, 7, 6, 45, 21, 9, 101, 102};

 System.out.printf("Original arr[] : %s\n", Arrays.toString(arr));

 Arrays.sort(arr);

 System.out.printf("Modified arr[] : %s\n", Arrays.toString(arr));

 }

}

// Original arr[] : [13, 7, 6, 45, 21, 9, 101, 102]

// Modified arr[] : [6, 7, 9, 13, 21, 45, 101, 102]

U10M12004-OOP

3.10.7 Multidimensional arrays

Dr. Helei Cui 114

• They use more than one index to access array elements.
• Used for tables and other more complex arrangements.

• int[][] is an array of arrays or a two-dimensional array:

• You can initialize it without a call to new, if you know the elements:

• Use two indexes to access element:
• E.g., magicSquare[1][2] is 11.

int[][] magicSquare = {

 {16, 3, 2, 13},

 {5, 10, 11, 8},

 {9, 6, 7, 12},

 {4, 15, 14, 1}

};

int[][] magicSquare = new int[ROWS][COLUMNS]; // without initializer

U10M12004-OOP

Visit all elements in a 2-D array

Dr. Helei Cui 115

• A “for each” loop does not automatically loop through all
elements in a two-dimensional array.

• Instead, it loops through the rows, which are themselves
one-dimensional arrays.

• Try Arrays.deepToString() method:

for (int[] row : magicSquare) {

 for (int value : row) {

 System.out.print(value + " ");

 }

 System.out.println();

}

System.out.println(Arrays.deepToString(a));

// [[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]

U10M12004-OOP

3.10.8 Ragged arrays

Dr. Helei Cui 116

• Java has no multidimensional arrays at all, only one-
dimensional arrays.
• Multidimensional arrays are faked as “arrays of arrays.”

• If the rows have different lengths, the array is “ragged” :

int[][] triangle = new int[5][];

for (int i = 0; i < 5; i++) {

 triangle[i] = new int[i+1];

}

System.out.println(Arrays.deepToString(triangle));

// [[0], [0, 0], [0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0, 0]]

U10M12004-OOP

Recap

Dr. Helei Cui 117

• 3.1 A Simple Java Program

• 3.2 Comments

• 3.3 Data Types

• 3.4 Variables and Constants

• 3.5 Operators

• 3.6 Strings

• 3.7 Input and Output

• 3.8 Control Flow

• 3.9 Big Numbers

• 3.10 Arrays

	幻灯片 1: Object Oriented Programming Chapter 3 Fundamental Programming Structures in Java
	幻灯片 2: Recap
	幻灯片 3: Contents
	幻灯片 4: FirstSample.java
	幻灯片 5: Rules for class names in Java
	幻灯片 6: The braces { }
	幻灯片 7: FirstSample.java
	幻灯片 8: Contents
	幻灯片 9: Comments
	幻灯片 10: Contents
	幻灯片 11: Java is strongly typed
	幻灯片 12: 3.3.1 Integer types
	幻灯片 13: Literals in Java
	幻灯片 14: 3.3.2 Floating-point types
	幻灯片 15: Caution: round-off error
	幻灯片 16: 3.3.3 The char type
	幻灯片 17: Escape sequences for special characters
	幻灯片 18: 3.3.4 Unicode and the char type
	幻灯片 19: ASCII vs Unicode in Java (13 min)
	幻灯片 20: 3.3.5 The boolean type
	幻灯片 21: Primitive vs reference
	幻灯片 22: Primitive and Reference Types in Memory (5 min)
	幻灯片 23: Contents
	幻灯片 24: Variables vs Constants
	幻灯片 25: 3.4.1 Declaring variables
	幻灯片 26: 3.4.2 Initializing variables
	幻灯片 27: Local type inference in Java 10
	幻灯片 28: 3.4.3 Constants
	幻灯片 29: Class constants
	幻灯片 30: 3.4.4 Enumerated types
	幻灯片 31: Contents
	幻灯片 32: 3.5.1 Arithmetic operators
	幻灯片 33: Quick question 1
	幻灯片 34: % in Java
	幻灯片 35: Division /
	幻灯片 36: Quick question 2
	幻灯片 37: 3.5.2 Mathematical functions and constants
	幻灯片 38: 3.5.3 Conversions between numeric types
	幻灯片 39: Rules
	幻灯片 40: 3.5.4 Casts
	幻灯片 41: Caution
	幻灯片 42: 3.5.5 Combining assignment with operators
	幻灯片 43: 3.5.6 Increment and decrement operators
	幻灯片 44: Quick question 3
	幻灯片 45: 3.5.7 Relational and boolean Operators
	幻灯片 46: Truth table
	幻灯片 47: The ternary ?: operator
	幻灯片 48: 3.5.8 Bitwise Operators
	幻灯片 49: 3.5.8 Bitwise Operators
	幻灯片 50: Quick question 4
	幻灯片 51: Quick question 5
	幻灯片 52: Two’s complement (4 min)
	幻灯片 53: 3.5.9 Parentheses and Operator Hierarchy
	幻灯片 54: Contents
	幻灯片 55: Strings in Java
	幻灯片 56: 3.6.1 Substrings
	幻灯片 57: 3.6.2 Concatenation
	幻灯片 58: 3.6.2 Concatenation
	幻灯片 59: 3.6.3 Strings are immutable
	幻灯片 60: 3.6.4 Test strings for equality
	幻灯片 61: The == operator?
	幻灯片 62: 3.6.5 Empty and null strings
	幻灯片 63: 3.6.6 Code points and code units
	幻灯片 64: 3.6.7 The String API
	幻灯片 65: 3.6.9 Building strings
	幻灯片 66: StringBuilder vs StringBuffer
	幻灯片 67: Contents
	幻灯片 68: 3.7.1 Reading Input
	幻灯片 69: InputTest.java
	幻灯片 70: Reading password
	幻灯片 71: 3.7.2 Formatting output
	幻灯片 72: Conversions for printf()
	幻灯片 73: Flags and String.format()
	幻灯片 74: 3.7.3 File input and output
	幻灯片 75: 3.7.3 File input and output
	幻灯片 76: Using buffered writer/reader (6 min)
	幻灯片 77: Why BufferedReader/BufferedWriter
	幻灯片 78: Contents
	幻灯片 79: 3.8.1 Block scope
	幻灯片 80: 3.8.1 Block scope
	幻灯片 81: 3.8.2 Conditional Statements
	幻灯片 82: if/else statement
	幻灯片 83: else if statement
	幻灯片 84: 3.8.3 Loops
	幻灯片 85: 3.8.3 Loops
	幻灯片 86: 3.8.4 Determinate loops
	幻灯片 87: for loop
	幻灯片 88: Caution
	幻灯片 89: Variable scope in for loop
	幻灯片 90: for loop and while loop
	幻灯片 91: 3.8.4 Multiple selections
	幻灯片 92: Caution
	幻灯片 93: The case label
	幻灯片 94: 3.8.5 Statements that break control flow
	幻灯片 95: 3.8.5 Statements that break control flow
	幻灯片 96: Quick question 6
	幻灯片 97
	幻灯片 98: Contents
	幻灯片 99: 3.9 Big numbers
	幻灯片 100: BigInteger
	幻灯片 101: Contents
	幻灯片 102: 3.10.1 Declaring arrays
	幻灯片 103: 3.10.1 Declaring arrays
	幻灯片 104: 3.10.1 Declaring arrays
	幻灯片 105: Empty array
	幻灯片 106: 3.10.2 Accessing array elements
	幻灯片 107: 3.10.3 The “for each” loop
	幻灯片 108: Output an array
	幻灯片 109: 3.10.4 Array copying
	幻灯片 110: Copy all values into a new array
	幻灯片 111: 3.10.5 Command-line parameters
	幻灯片 112: 3.10.5 Command-line parameters
	幻灯片 113: 3.10.6 Array sorting
	幻灯片 114: 3.10.7 Multidimensional arrays
	幻灯片 115: Visit all elements in a 2-D array
	幻灯片 116: 3.10.8 Ragged arrays
	幻灯片 117: Recap

