
U10M12004-OOP

Object Oriented
Programming

Chapter 6
Interfaces, Lambda Expressions,
and Inner Classes

Slides partially adapted from lecture
notes by Cay Horstmann

Dr. Muhammad Umar Farooq Qaisar

8th April 2025

U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 2

• 6.1 Interfaces

• 6.2 Lambda Expressions

• 6.3 Inner Classes

U10M12004-OOP

6.1.1 The Interface Concept

Dr. Muhammad Umar Farooq Qaisar 3

• What is an interface in Java?
• Interface is not a class, but a set of requirements for classes.

• Class can choose to conform to one or more interfaces.
• “If your class conforms to a particular interface, then I'll perform

the service.”

• Example: Arrays.sort sorts an array if the element class
conforms to the Comparable interface.

• This means that any class that implements the Comparable
interface is required to have a compareTo method, and the method
must take an Object parameter and return an integer.

• All methods of an interface are automatically public.

public interface Comparable {
 int compareTo(Object other); // automatically public
}

U10M12004-OOP

6.1.1 The Interface Concept

Dr. Muhammad Umar Farooq Qaisar 4

• Interfaces can define constants, but never have instance fields.
• An interface = An abstract class with no instance fields

• Two steps to make a class implement an interface:

1. Declare that your class intends to implement the given
interface.

2. Supply definitions for all methods in the interface.

public class Employee implements Comparable {
 public int compareTo(Object otherObject) {
 Employee other = (Employee) otherObject;
 return Double.compare(salary, other.salary);
 }
 . . .
}

U10M12004-OOP

Caution

Dr. Muhammad Umar Farooq Qaisar 5

• In the interface declaration, the compareTo method was not
declared public because all methods in an interface are
automatically public.

• However, when implementing the interface, you must declare the
method as public.
• Otherwise, the compiler assumes that the method has package access -

the default for a class. The compiler then complains that you’re trying to
supply a more restrictive access privilege.

public class Employee implements Comparable {
 public int compareTo(Object otherObject) {
 Employee other = (Employee) otherObject;
 return Double.compare(salary, other.salary);
 }
}

public interface Comparable {
 int compareTo(Object other); // automatically public
}

U10M12004-OOP

6.1.1 The Interface Concept

Dr. Muhammad Umar Farooq Qaisar 6

• Better to supply a type parameter for the generic
Comparable interface:

• The compareTo method returns:

• a negative if the first argument is less than the second
argument;

• 0 if they are equal;

• a positive value otherwise.

class Employee implements Comparable<Employee> {
 public int compareTo(Employee other) {
 return Double.compare(salary, other.salary);
 }
 . . .
}

U10M12004-OOP

A Problem?

Dr. Muhammad Umar Farooq Qaisar 7

• Reason: the Java programming language is strongly typed.
When making a method call, the compiler needs to be able
to check that the method actually exists.

• Somewhere in the sort method will be statements like this:

• The compiler must know that a[i] has a compareTo method. If a
is an array of Comparable objects, then the existence of the
method is assured because every class that implements the
Comparable interface must supply the method.

if (a[i].compareTo(a[j]) > 0) {
 // rearrange a[i] and a[j]
 . . .
}

Why can’t the Employee class simply provide a compareTo
method without implementing the Comparable interface?

U10M12004-OOP

6.1.2 Properties of Interfaces

Dr. Muhammad Umar Farooq Qaisar 8

• Interfaces are not classes. You can't use the new operator
to instantiate an interface:

• You can have variables of interface type:

• The variable must refer to an object of a class that implements the
interface:

• Use instanceof to check whether an object implements an
interface:

if (anObject instanceof Comparable) { . . . }

x = new Employee(. . .); // OK provided Employee implements Comparable

Comparable x; // OK

x = new Comparable(. . .); // Error

U10M12004-OOP

6.1.2 Properties of Interfaces

Dr. Muhammad Umar Farooq Qaisar 9

• An interface can extend another:

• An interface can have constants:

• A class can implement multiple interfaces:

class Employee implements Comparable, Moveable { ... }

public interface Powered extends Moveable {
 double milesPerGallon();
 double SPEED_LIMIT = 95; // a public static final constant
}

public interface Moveable {
 void move(double x, double y);
}

public interface Powered extends Moveable {
 double milesPerGallon();
}

U10M12004-OOP

6.1.3 Interfaces and Abstract Classes

Dr. Muhammad Umar Farooq Qaisar 10

• Why not make Comparable into an abstract class?

• Then Employee would simply extend it:

• A major problem: A class can only extend a single class.

• But each class can implement as many interfaces as it likes:

class Employee extends Person, Comparable // Error

class Employee extends Comparable { // why not?
 public int compareTo(Object other) { . . . }
}

abstract class Comparable { // why not?
 public abstract int compareTo(Object other);
}

class Employee extends Person implements Comparable // OK

U10M12004-OOP

6.1.4 Static and Private Methods

Dr. Muhammad Umar Farooq Qaisar 11

• Originally disallowed since it wasn't in the spirit of interfaces
as abstract specifications.
• As of Java 8, you are allowed to add static methods to interfaces.

• You can find many pairs of interface/companion class in the
Java API: Collection/Collections, Path/Paths.
• Paths has a factory method get to make a Path object.

• E.g., Paths.get("jdk-11", "conf", "security").

• It would be better solved with a static method in the Path
interface:

public interface Path {
 public static Path of(URI uri) { . . . }
 public static Path of(String first, String... more) { . . . }
 . . .
}

Similarly, when implementing your own interfaces, there is no
need to provide a separate companion class for utility methods.

U10M12004-OOP

6.1.4 Static and Private Methods

Dr. Muhammad Umar Farooq Qaisar 12

• As of Java 9, methods in an interface can be private.
• A private method can be static or an instance method.

• Since private methods can only be used in the methods of the
interface itself, their use is limited to being helper methods for the
other methods of the interface.

U10M12004-OOP

6.1.5 Default Methods

Dr. Muhammad Umar Farooq Qaisar 13

• You can supply a default implementation for any
interface method:

• Not very useful since every implementation of Comparable would
override this method.

• But sometimes, default methods can be useful.

public interface Comparable<T> {
 default int compareTo(T other) { return 0; }
 // by default, all elements are the same
}

public interface Iterator<E> {
 boolean hasNext();
 E next();
 default void remove() {
 throw new UnsupportedOperationException("remove");
 }
 . . .
}

U10M12004-OOP

6.1.5 Default Methods

Dr. Muhammad Umar Farooq Qaisar 14

• A default method can call an abstract method:

• An important use for default methods is interface evolution.

• Consider in a later version, a new method is added to the interface.
• If the method is not a default method, then the Bag class would no

longer compile since it doesn’t implement the new method.
• Adding a nondefault method to an interface is not source-compatible.

• If you don’t recompile the class and simply use an old JAR file containing
it. The class will still load, even with the missing method.
• Adding a method to an interface is binary compatible.

• But if a program calls the new method on a Bag instance, an error occurs.

• Making the method a default method solves both problems.

public interface Collection {
 int size(); // an abstract method
 default boolean isEmpty() { return size() == 0; }
 . . .
}

public class Bag implements Collection

U10M12004-OOP

6.1.6 Resolving Default Method Conflicts

Dr. Muhammad Umar Farooq Qaisar 15

• What happens if the exact same method is defined as a
default method in one interface and then again as a
method of a superclass or another interface?

• Two simple rules in Java:
1. Interfaces clash. If an interface provides a default method and

another interface provides the same one (default or not), you
must resolve the conflict by overriding that method.

2. Superclasses win. If a superclass provides a concrete method,
default methods with the same name and parameter types are
simply ignored.

U10M12004-OOP

The “Interfaces Clash” Rule

Dr. Muhammad Umar Farooq Qaisar 16

• What happens if a class implements both interfaces?
• You need to implement the getName method.

• You can call one of the two conflicting methods as follows:

interface Person {
 default String getName() { return ""; };
}
interface Named {
 default String getName() { return getClass().getName() +

"_" + hashCode();
}

class Student implements Person, Named {
 public String getName() { return Person.super.getName(); }
 . . .
}

U10M12004-OOP

The “Superclasses Win” Rule

Dr. Muhammad Umar Farooq Qaisar 17

• Now, assume that Person is a superclass and Named is an
interface:

• What happens if the extended class and the implemented
interface have the same methods?
• Only the superclass method matters, and any default method from

the interface is simply ignored.

• The default method getName in the Named interface will be
ignored.

• This rule ensures compatibility with Java 7:

• If you add a default method to an interface, it has no impact on
existing code.

class Student extends Person implements Named { . . . }

U10M12004-OOP

Private Interface Methods

Dr. Muhammad Umar Farooq Qaisar 18

• As of Java 9:
• Interfaces can have concrete private and private
static methods.

• Any interface method is abstract, default, static,
private, or private static.

• Private methods can only be called from default and
static methods of the same interface.

• Potentially useful for factoring out common code.

U10M12004-OOP

6.1.7 Interfaces and Callbacks

Dr. Muhammad Umar Farooq Qaisar 19

• Callback: Action that should happen when an event occurs.
• E.g., Timer makes callback whenever a time interval has elapsed.

• Give the timer an object of a class that implements this interface:

• The timer calls the actionPerformed method when the time
interval has expired.

• You can define a class that implements the ActionListener
interface:

public interface ActionListener {
 void actionPerformed(ActionEvent event);
}

class TimePrinter implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 Toolkit.getDefaultToolkit().beep();
 }
}

U10M12004-OOP

6.1.7 Interfaces and Callbacks

Dr. Muhammad Umar Farooq Qaisar 20

• Construct and install the object:

• Every second, a message is shown, followed by a beep.

• Try the Listing 6.3 timer/TimerTest.java!

var listener = new TimePrinter();
Timer t = new Timer(1000, listener);
t.start();

At the tone, the time is 2017-12-16T05:01:49.550Z

U10M12004-OOP

6.1.8 The Comparator Interface

Dr. Muhammad Umar Farooq Qaisar 21

• You saw how Arrays.sort sorts an array of Comparable
objects.
• E.g., you can sort an array of strings since the String class

implements Comparable<String>.

• What if you want to sort the objects in a different way?
• What if the objects belong to a class that doesn't

implement Comparable?
• To deal with this situation, there is a second version of the
Arrays.sort method whose parameters are an array and a
comparator - an instance of a class that implements the
Comparator interface.

• https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java
/util/Arrays.html#sort(T%5B%5D,java.util.Comparator)

public interface Comparator<T> {
int compare(T first, T second);

}

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#sort(T%5B%5D,java.util.Comparator)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#sort(T%5B%5D,java.util.Comparator)

U10M12004-OOP

6.1.8 The Comparator Interface

Dr. Muhammad Umar Farooq Qaisar 22

• This comparator compares strings by length:

• Do the comparison:

• Pass an instance to Arrays.sort:

var comp = new LengthComparator();
if (comp.compare(words[i], words[j]) > 0) . . .

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends, new LengthComparator());

class LengthComparator implements Comparator<String> {
 public int compare(String first, String second) {
 return first.length() - second.length();
 }
}

U10M12004-OOP

6.1.9 Object Cloning

Dr. Muhammad Umar Farooq Qaisar 23

• Recall what happens when you make a
copy of an object variable:

• The Cloneable interface indicates that a
class provides a safe clone method.
• If Employee is cloneable, then you can call

Employee copy = original.clone();
copy.raiseSalary(10); // original unchanged

var original = new Employee("John Public", 50000);
Employee copy = original;
copy.raiseSalary(10); // also changed original

U10M12004-OOP

6.1.9 Object Cloning

Dr. Muhammad Umar Farooq Qaisar 24

• Cloneable is an interface without methods:

• The clone method is a protected method of Object.
• It means that your code cannot simply call it.

• The method is protected because it is tricky to implement correctly.

• Object.clone makes a “shallow” copy: a new object with the
same fields.

public interface Cloneable {}

• That is bad if one of the
fields is a reference to a
mutable object:

U10M12004-OOP

6.1.9 Object Cloning

Dr. Muhammad Umar Farooq Qaisar 25

• For every class, you need to decide whether
1. The default clone method is good enough;

2. The default clone method can be patched up by
calling clone on the mutable subobjects; or

3. clone should not be attempted.

• The third option is actually the default. To choose
either the first or the second option, a class must

1. Implement the Cloneable interface; and

2. Redefine the clone method with the public access
modifier.

U10M12004-OOP

6.1.9 Object Cloning

Dr. Muhammad Umar Farooq Qaisar 26

• You must implement a deep copy and clone any mutable fields:

• You can catch the CloneNotSupportedException in a final
class. Otherwise, it’s better to leave the throws specifier in place.

• Less than 5% of the classes in the Java API are cloneable.

class Employee implements Cloneable {
 . . .
 public Employee clone() throws CloneNotSupportedException {
 // call Object.clone()
 Employee cloned = (Employee) super.clone();

 // clone mutable fields
 cloned.hireDay = (Date) hireDay.clone();
 return cloned;
 }
}

U10M12004-OOP

When to use Abstract Class?

Dr. Muhammad Umar Farooq Qaisar 27

• Consider using abstract classes if any of these statements
apply to your situation:
• In the java application, there are some related classes that need to

share some lines of code then you can put these lines of code
within the abstract class and this abstract class should be extended
by all these related classes.

• You can define the non-static or non-final field(s) in the abstract
class so that via a method you can access and modify the state of
the Object to which they belong.

• You can expect that the classes that extend an abstract class have
many common methods or fields, or require access modifiers other
than public (such as protected and private).

U10M12004-OOP

When to use Interface?

Dr. Muhammad Umar Farooq Qaisar 28

• Consider using interfaces if any of these statements apply to
your situation:
• It is a total abstraction, all methods declared within an interface

must be implemented by the class(es) that implements this
interface.

• A class can implement more than one interface. This can be viewed
as “multiple inheritances”.

• You want to specify the behavior of a particular data type, but not
concerned about who implements its behavior.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 29

Can you instantiate an interface as you can a class?

A. Yes

B. No

Answer: No,

Explanation: you cannot directly instantiate an interface (new MyInterface()), but
you can create an instance of a class that implements it.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 30

Can an interface define code for its methods?

A. Yes

B. No

Answer: Yes

Explanation: Interfaces can define method implementations using default, static,
or private methods.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 31

Given the following interface:

public interface Clickable {
 public void click();
}

Which of the following would work as an implementation of the Clickable
interface? (don’t worry about what changeXPosition does)

C. @Override
public void click(double xPosition) {
 this.changeXPosition(xPosition);
}

B. @Override
public void clickIt() {
 this.changeXPosition(100.0);
}

A. @Override
public double click() {
 return this.changeXPosition(100.0);
}

D. @Override
public void click() {
 this.changeXPosition(100.0);
}

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 32

Answer: D

Explanation: The interface defines void click() (no parameters, no return value).

D matches the exact method signature (void click()).

Why the others fail:

A: Wrong return type (double instead of void).

B: Wrong method name (clickIt instead of click).

C: Wrong parameters (double xPosition instead of none).

One-line answer: Only D correctly implements void click() as defined in the
interface.

U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 33

• 6.1 Interfaces

• 6.2 Lambda Expressions

• 6.3 Inner Classes

U10M12004-OOP

6.2.1 Why Lambdas?

Dr. Muhammad Umar Farooq Qaisar 34

• A lambda expression is a block of code that you can pass
around so it can be executed later, once or multiple times.

• If you want to sort strings by length instead of the default
dictionary order, you can pass a Comparator object to the
sort method:

• A block of code was passed to a sort method. That code block was
called at some later time.

class LengthComparator implements Comparator<String> {
 public int compare(String first, String second) {
 return first.length() - second.length();
 }
}
. . .
Arrays.sort(strings, new LengthComparator());

U10M12004-OOP

6.2.2 The Syntax of Lambda Expressions

Dr. Muhammad Umar Farooq Qaisar 35

• We pass code that checks whether one string is shorter than
another. We compute “first.length() - second.length()”.
• The “first” and the “second” are both strings.

• Now you can define your first lambda expression:

• Simplest form: (parameters) -> expression

(String first, String second) -> first.length() - second.length()

U10M12004-OOP

6.2.2 The Syntax of Lambda Expressions

Dr. Muhammad Umar Farooq Qaisar 36

• If the code doesn't fit in a single expression, use {} and a
return statement:

• If there are no parameters, you still supply parentheses:

• If parameter types can be inferred, you can omit them:

() -> { for (int i = 100; i >= 0; i--) System.out.println(i); }

(String first, String second) -> {
 if (first.length() < second.length()) return -1;
 else if (first.length() > second.length()) return 1;
 else return 0;
}

Comparator<String> comp
 = (first, second) // same as (String first, String second)
 -> first.length() - second.length();

U10M12004-OOP

6.2.2 The Syntax of Lambda Expressions

Dr. Muhammad Umar Farooq Qaisar 37

• If a method has a single parameter with inferred type, you
can even omit the parentheses:

• You never specify the result type of a lambda expression. It
is always inferred from context.

• A result of type int is expected.

ActionListener listener = event ->
 System.out.println("The time is "
 + Instant.ofEpochMilli(event.getWhen()));
 // instead of (event) -> . . . or (ActionEvent event) -> . . .

(String first, String second) -> first.length() - second.length()

U10M12004-OOP

6.2.3 Functional Interfaces

Dr. Muhammad Umar Farooq Qaisar 38

• Functional interface = Interface with a single abstract
method (called functional method).
• E.g., ActionListener and Comparator.

• Lambda expression can be used whenever a functional
interface value is expected:
Arrays.sort(strings, new LengthComparator()); //functional interface
Arrays.sort(words,
 (first, second) -> first.length() - second.length());

var timer = new Timer(1000, new TimePrinter()); //functional interface
var timer = new Timer(1000, event -> {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 Toolkit.getDefaultToolkit().beep();
 });

In fact, conversion to a functional interface is the only thing
that you can do with a lambda expression in Java.

U10M12004-OOP

6.2.3 Functional Interfaces

Dr. Muhammad Umar Farooq Qaisar 39

• The java.util.function package defines generic
functional interfaces.

• Example 1: BiFunction<T, U, R>, describes functions
with parameter types T and U and return type R.

• However, that does not help you with sorting. There is no
Arrays.sort method that wants a BiFunction.

• When you want to do something with lambda expressions, you still
want to keep the purpose of the expression in mind, and have a
specific functional interface for it.

public interface BiFunction<T, U, R> {
 R apply(T t, U u);
}

BiFunction<String, String, Integer> comp
 = (first, second) -> first.length() - second.length();

U10M12004-OOP

6.2.3 Functional Interfaces

Dr. Muhammad Umar Farooq Qaisar 40

• Example 2: Predicate<T> represents a predicate
(boolean-valued function) of one argument.

• ArrayList has a removeIf method that takes a
Predicate.
• It is specifically designed to pass a lambda expression.

• E.g., this statement removes all null values from an array list:

public interface Predicate<T> {
 boolean test(T t);
 // additional default and static methods
}

list.removeIf(e -> e == null);

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.ht
ml#removeIf(java.util.function.Predicate)

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#removeIf(java.util.function.Predicate)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#removeIf(java.util.function.Predicate)

U10M12004-OOP

6.2.3 Functional Interfaces

Dr. Muhammad Umar Farooq Qaisar 41

• Example 3: Supplier<T> represents a supplier of results.

• A supplier has no arguments and yields a value of type T when it is
called. Suppliers are used for lazy evaluation.

• E.g., consider the call

• We expect that day is rarely null, so we only want to construct the
default LocalDate when necessary.

• The requireNonNullOrElseGet method only calls the supplier
when the value is needed.

LocalDate hireDay = Objects.requireNonNullOrElse(day,
 new LocalDate(1970, 1, 1));

public interface Supplier<T> {
T get();

}

LocalDate hireDay = Objects.requireNonNullOrElseGet(day,
 () -> new LocalDate(1970, 1, 1));

U10M12004-OOP

6.2.4 Method References

Dr. Muhammad Umar Farooq Qaisar 42

• Consider a lambda expression that calls a single method:

• It would be nicer if you could just pass the println method to the
Timer constructor. Here is how you do that:

• “System.out::println” is a method reference.
• It directs the compiler to produce an instance of a functional

interface, overriding the single abstract method of the interface to
call the given method.

• In this example, an ActionListener is produced whose
actionPerformed(ActionEvent e) method calls
System.out.println(e).

var timer = new Timer(1000, System.out::println);

var timer = new Timer(1000, event -> System.out.println(event));

Like a lambda expression, a method reference is not an
object. It gives rise to an object when assigned to a variable
whose type is a functional interface.

U10M12004-OOP

6.2.4 Method References

Dr. Muhammad Umar Farooq Qaisar 43

• As another example, suppose you want to sort strings
regardless of letter case. You can pass this method
expression:

• The :: operator separates the method name from the name
of an object or class. There are three variants:

1. object::instanceMethod

2. Class::staticMethod

3. Class::instanceMethod

Arrays.sort(strings, String::compareToIgnoreCase)

System.out::println // x -> System.out.println(x)

String::compareToIgnoreCase //(x, y) -> x.compareToIgnoreCase(y)

Math::pow // (x, y) -> Math.pow(x, y)

U10M12004-OOP

Note

Dr. Muhammad Umar Farooq Qaisar 44

• A lambda expression can only be rewritten as a method
reference if the body of the lambda expression calls a single
method and doesn’t do anything else.
• Consider the lambda expression:

• There is a single method call. But there is also a comparison, so you
can’t use a method reference here.

• When there are multiple overloaded methods with the
same name, the compiler will try to find from the context
which one you mean.
• Two versions of the Math.max method, which one gets picked

depends on the method parameters of the functional interface.

s -> s.length() == 0

U10M12004-OOP

“this” and “super” in Method References

Dr. Muhammad Umar Farooq Qaisar 45

• You can capture the this parameter in a method reference.

• It is also valid to use super.

• When the RepeatedGreeter.greet method starts, a Timer is
constructed that executes the super::greet method on every
timer tick.

class Greeter {
 public void greet(ActionEvent event) {
 System.out.println("Hello, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 }
}
class RepeatedGreeter extends Greeter {
 public void greet(ActionEvent event) {
 var timer = new Timer(1000, super::greet);
 timer.start();
 }
}

this::equals // x -> this.equals(x)

U10M12004-OOP

6.2.5 Constructor References

Dr. Muhammad Umar Farooq Qaisar 46

• Constructor references are just like method references,
except that the name of the method is new.
• Person::new is a reference to a Person constructor.

• Same as s -> new Person(s).

• The compiler uses overloading resolution to pick the correct
constructor. E.g., turn list of names into list of Person objects:

• The map method turns a stream of strings into a stream of Person
objects.
• It calls the Person(String) constructor for each list element.

• If there are multiple Person constructors, the compiler picks the one
with a String parameter because it infers from the context that the
constructor is called with a string.

ArrayList<String> names = . . .;
Stream<Person> stream = names.stream().map(Person::new);
List<Person> people = stream.collect(Collectors.toList());

U10M12004-OOP

6.2.5 Constructor References

Dr. Muhammad Umar Farooq Qaisar 47

• Constructor references also work for arrays:
• int[]::new is the same as the lambda expression x->new int[x]

• Useful to overcome limitation of Java generics: illegal to call new T[n]

• The expression new T[n] is an error since it would be erased to new
Object[n]. That is a problem for library authors.

• Suppose we want to have an array of Person objects. The Stream
interface has a toArray method that returns an Object array:

• The user wants an array of references to Person, not references to
Object. The stream library solves that problem with constructor
references. Pass Person[]::new to the toArray method:

• The toArray method invokes this constructor to obtain an array of the
correct type. Then it fills and returns the array.

Object[] people = stream.toArray();

Person[] people = stream.toArray(Person[]::new);

U10M12004-OOP

6.2.6 Variable Scope

Dr. Muhammad Umar Farooq Qaisar 48

• A lambda expression can access variables from the
enclosing scope:

• Consider a call:

public static void repeatMessage(String text, int delay) {
 ActionListener listener = event -> {
 System.out.println(text);
 Toolkit.getDefaultToolkit().beep();
 };
 new Timer(delay, listener).start();
}

repeatMessage("Hello", 1000); //prints Hello every 1,000 milliseconds

The code of the lambda expression may run long after the call to
repeatMessage has returned, and the parameter variables are gone.
How does the text variable stay around?

U10M12004-OOP

6.2.6 Variable Scope

Dr. Muhammad Umar Farooq Qaisar 49

• A lambda expression has three ingredients:
1. A block of code;

2. Parameters;

3. Values for the free variables - that is, the variables that
are not parameters and not defined inside the code.

• In above example, the lambda expression has one
free variable, text.
• The data structure representing the lambda expression

must store the values for the free variables - in our case,
the string "Hello". We say that such values have been
captured by the lambda expression.

The technical term for a block of code together with the
values of the free variables is a closure.

U10M12004-OOP

6.2.6 Variable Scope

Dr. Muhammad Umar Farooq Qaisar 50

• A lambda variable can only capture a variable whose value is
unchanged:

• Also, illegal if the variable changes outside the lambda expression:

public static void countDown(int start, int delay) {
 ActionListener listener = event -> {
 start--; // ERROR: Can't mutate captured variable
 System.out.println(start);
 };
 new Timer(delay, listener).start();
}

public static void repeat(String text, int count) {
 for (int i = 1; i <= count; i++) {
 ActionListener listener = event -> {
 System.out.println(i + ": " + text);
 // ERROR: Cannot refer to changing i
 };
 new Timer(1000, listener).start();
 }
}

The rule is that any captured variable in a lambda
expression must be effectively final.

U10M12004-OOP

6.2.6 Variable Scope

Dr. Muhammad Umar Farooq Qaisar 51

• The body of a lambda expression has the same scope as a nested
block.
• The same rules for name conflicts and shadowing apply.

• It is illegal to declare a parameter or a local variable in the lambda that has
the same name as a local variable.

• Inside a method, you can’t have two local variables with the same name,
and therefore, you can’t introduce such variables in a lambda expression
either.

Path first = Path.of("/usr/bin");
Comparator<String> comp
 = (first, second) -> first.length() - second.length();
 // ERROR: Variable first already defined

U10M12004-OOP

6.2.6 Variable Scope

Dr. Muhammad Umar Farooq Qaisar 52

• When you use this keyword in a lambda expression, you refer to
this parameter of the method that creates the lambda.

• The expression this.toString() calls the toString method of the
Application object, not the ActionListener instance.

• There is nothing special about the use of this in a lambda expression.

• The scope of the lambda expression is nested inside the init method, and
this has the same meaning anywhere in that method.

public class Application {
 public void init() {
 ActionListener listener = event -> {
 System.out.println(this.toString());
 . . .
 }
 . . .
 }
}

U10M12004-OOP

6.2.7 Processing Lambda Expressions

Dr. Muhammad Umar Farooq Qaisar 53

• The point of using lambdas is deferred execution.

• Reasons for executing code later:
• Running the code in a separate thread;

• Running the code multiple times;

• Running the code at the right point in an algorithm (for
example, the comparison operation in sorting);

• Running the code when something happens (a button
was clicked, data has arrived, and so on);

• Running the code only when necessary;

U10M12004-OOP

6.2.7 Processing Lambda Expressions

Dr. Muhammad Umar Farooq Qaisar 54

• Example 1: repeat an action n times:

• To accept the lambda, we need to pick (or, in rare cases,
provide) a functional interface.
• In this example, use the Runnable interface (that runs an action

without arguments or return value):

• Note that the body of the lambda expression is executed when
action.run() is called.

public static void repeat(int n, Runnable action) {
 for (int i = 0; i < n; i++) action.run();
}

repeat(10, () -> System.out.println("Hello, World!"));

U10M12004-OOP

6.2.7 Processing Lambda Expressions

Dr. Muhammad Umar Farooq Qaisar 55

• Example 2: repeat an action n times and tell the action in
which iteration it occurs.
• For this, we can use the IntConsumer interface (that has a

method with an int parameter and a void return):

• Here is the improved version of the repeat method:

• You can call it:

public static void repeat(int n, IntConsumer action) {
 for (int i = 0; i < n; i++) action.accept(i);
}

public interface IntConsumer {
 void accept(int value);
}

repeat(10, i -> System.out.println("Countdown: " + (9 - i)));

U10M12004-OOP

6.2.8 More about Comparators

Dr. Muhammad Umar Farooq Qaisar 56

• Comparator interface has useful static methods for
creating and composing comparators.
• These methods are intended to be used with lambda expressions or

method references.

• E.g., the static method comparing makes a comparator
from a key extractor function:

• Chains comparators via thenComparing method:

• If the key is a primitive type, use comparingInt or
comparingDouble to avoid boxing:

Arrays.sort(people, Comparator.comparing(Person::getName));

Arrays.sort(people,
 Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName));

Arrays.sort(people, Comparator.comparingInt(p ->
 p.getName().length()));

U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 57

• 6.1 Interfaces

• 6.2 Lambda Expressions

• 6.3 Inner Classes

U10M12004-OOP

What is Inner Class?

Dr. Muhammad Umar Farooq Qaisar 58

• An inner class is a class that is defined inside another class.

• Two reasons why we need it:
• Inner classes can be hidden from other classes in the same package.

• Inner class methods can access the data from the scope in which
they are defined - including the data that would otherwise be
private.

• Notice:
• Inner classes used to be very important for concisely implementing

callbacks, but nowadays lambda expressions do a much better job.

• Still, inner classes can be very useful for structuring your code.

U10M12004-OOP

6.3.1 Use of an Inner Class to Access Object State

Dr. Muhammad Umar Farooq Qaisar 59

• We refactor the TimerTest example and extract a TalkingClock
class. A talking clock is constructed with two parameters:

• the interval between announcements, and

• a flag to turn beeps on or off.

• The TimePrinter class is now located inside the TalkingClock class,
but this does not mean that every TalkingClock has a TimePrinter
instance field.

• As you will see, the TimePrinter objects are constructed by methods of
the TalkingClock class.

public class TalkingClock {
 private int interval;
 private boolean beep;
 public TalkingClock(int interval, boolean beep) { . . . }
 public void start() { . . . }
 public class TimePrinter implements ActionListener {
 // an inner class
 . . .
 }
}

U10M12004-OOP

6.3.1 Use of an Inner Class to Access Object State

Dr. Muhammad Umar Farooq Qaisar 60

• Inner class implementation:
public class TimePrinter implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
}

• The TimePrinter class has no
instance field or variable named beep.

• Instead, beep refers to the field of the
TalkingClock object that created
this TimePrinter.

An inner class method gets to access
both its own data fields and those
of the outer object creating it.

U10M12004-OOP

6.3.1 Use of an Inner Class to Access Object State

Dr. Muhammad Umar Farooq Qaisar 61

• The reference to the outer object is called outer.

• The outer class reference is set in the constructor.
• The compiler modifies all inner class constructors,

adding a parameter for the outer class reference.

public void actionPerformed(ActionEvent event) {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (outer.beep) Toolkit.getDefaultToolkit().beep();
}

public TimePrinter(TalkingClock clock) {
 // automatically generated code
 outer = clock;
}

U10M12004-OOP

6.3.1 Use of an Inner Class to Access Object State

Dr. Muhammad Umar Farooq Qaisar 62

• The “outer” is not a Java keyword, just used to illustrate the
mechanism involved in an inner class.
• When a TimePrinter object is constructed in the start method,

the compiler passes the this reference to the current talking clock
into the constructor:

• Note:
• We could have declared the TimePrinter class as private. Then

only TalkingClock methods would be able to construct
TimePrinter objects.

• Only inner classes can be private. Regular classes always have either
package or public access.

var listener = new TimePrinter(this); // parameter automatically added

U10M12004-OOP

6.3.2 Special Syntax Rules for Inner Classes

Dr. Muhammad Umar Farooq Qaisar 63

• The reference to the outer class is outerClass.this:

• Use the syntax to write the inner object constructor.

• Any outer class object can construct an inner class object:

public void actionPerformed(ActionEvent event) {
 . . .
 if (TalkingClock.this.beep) Toolkit.getDefaultToolkit().beep();
}

outerObject.new InnerClass(construction parameters)
// Example: ActionListener listener = this.new TimePrinter();

var jabberer = new TalkingClock(1000, true);
TalkingClock.TimePrinter listener = jabberer.new TimePrinter();

The name of a (non-private) inner class is
OuterClass.InnerClass when it occurs
outside the scope of the outer class.

U10M12004-OOP

6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?

Dr. Muhammad Umar Farooq Qaisar 64

• Inner classes are translated into regular class files with $
(dollar signs) delimiting outer and inner class names, and
the virtual machine does not have any special knowledge
about them.
• E.g., the TimePrinter class inside the TalkingClock class is

translated to a class file TalkingClock$TimePrinter.class.

public class TalkingClock {
 private int interval;
 private boolean beep;
 public TalkingClock(int interval, boolean beep) { . . . }
 public void start() { . . . }
 public class TimePrinter implements ActionListener {
 // an inner class
 . . .
 }
}

U10M12004-OOP

6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?

Dr. Muhammad Umar Farooq Qaisar 65

• Let’s try to make TimePrinter a regular class, outside the
TalkingClock class.
• When constructing a TimePrinter object, we pass it the this

reference of the object that is creating it.

class TalkingClock {
 public void start() {
 var listener = new TimePrinter(this);
 var timer = new Timer(interval, listener);
 timer.start();
 }
}
class TimePrinter implements ActionListener {
 private TalkingClock outer;
 public TimePrinter(TalkingClock clock) {
 outer = clock;
 }
}

U10M12004-OOP

6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?

Dr. Muhammad Umar Farooq Qaisar 66

• Later, let’s see the actionPerformed method. It needs to
access outer.beep.

• Reason:
• The inner class can access the private data of the outer class, but

our external TimePrinter class cannot.
• Thus, inner classes are genuinely more powerful than regular classes

because they have more access privileges.

if (outer.beep) . . . // ERROR

U10M12004-OOP

6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?

Dr. Muhammad Umar Farooq Qaisar 67

• To summarize, if an inner class accesses a private data field,
then it is possible to access that data field through other
classes added to the package of the outer class, but to do so
requires skill and determination.

• A programmer cannot accidentally obtain access but must
intentionally build or modify a class file for that purpose.

U10M12004-OOP

6.3.4 Local Inner Classes

Dr. Muhammad Umar Farooq Qaisar 68

• If an inner class is only used in a method, you can define the
class locally in a single method, called local inner class.
• E.g., we can define TimePrinter class in a single method.

• Local classes are never public, private, or protected.
• Scope is always restricted to the block in which they are declared.

• One advantage: they are completely hidden from the outside world.
• Not even other code in the TalkingClock class can access them.

• No method except start has any knowledge of the TimePrinter class.

public void start() {
 class TimePrinter implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 }
 var listener = new TimePrinter();
 var timer = new Timer(interval, listener);
 timer.start();
}

U10M12004-OOP

6.3.5 Accessing Variables from Outer Methods

Dr. Muhammad Umar Farooq Qaisar 69

• Local classes can access effectively final variables from
the enclosing scope.
• You can move the interval and beep parameters from the
TalkingClock constructor to the start method.

• Note that the TalkingClock class no longer needs to store a
beep instance field. It simply refers to the beep parameter variable
of the start method.

public void start(int interval, boolean beep) {
 class TimePrinter implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 }
 var listener = new TimePrinter();
 var timer = new Timer(interval, listener);
 timer.start();
}

U10M12004-OOP

6.3.5 Accessing Variables from Outer Methods

Dr. Muhammad Umar Farooq Qaisar 70

• Consider the flow of control more closely:
1. The start method is called.

2. The object variable listener is initialized by a call to the
constructor of the inner class TimePrinter.

3. The listener reference is passed to the Timer
constructor, the timer is started, and the start method
exits. At this point, the beep parameter variable of the
start method no longer exists.

4. A second later, the actionPerformed method executes
“if (beep) . . .”

U10M12004-OOP

6.3.6 Anonymous Inner Classes

Dr. Muhammad Umar Farooq Qaisar 71

• If a local class is only instantiated once, it can be anonymous:

• This means:
• Create a new object of a class that implements the
ActionListener interface, where the required method
actionPerformed is the one defined inside the braces { }.

public void start(int interval, boolean beep) {
 var listener = new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 };
 var timer = new Timer(interval, listener);
 timer.start();
}

U10M12004-OOP

6.3.6 Anonymous Inner Classes

Dr. Muhammad Umar Farooq Qaisar 72

• General syntax of anonymous inner class:

• SuperType can be an interface, such as ActionListener; then, the
inner class implements that interface.

• SuperType can also be a class; then, the inner class extends that class.

• An anonymous inner class cannot have constructors because
the name of a constructor must be the same as the name of a
class, and the class has no name.
• Instead, the construction parameters are given to the superclass

constructor.

• In particular, whenever an inner class implements an interface, it
cannot have any construction parameters.

new SuperType(construction parameters) {
 // inner class methods and fields
}

U10M12004-OOP

6.3.6 Anonymous Inner Classes

Dr. Muhammad Umar Farooq Qaisar 73

• If there is just one method, use a lambda expression.
• E.g., the start method from the beginning of this section can be

written much more concisely with a lambda expression like this:

public void start(int interval, boolean beep) {
 var timer = new Timer(interval, event -> {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 });
 timer.start();
}

U10M12004-OOP

6.3.7 Static Inner Classes

Dr. Muhammad Umar Farooq Qaisar 74

• Static inner class = inner class without reference to
creating object.

• Useful for a private or scoped class that doesn't need to
know the creating object.

• Called as:

class ArrayAlg {
 public static class Pair {
 public double first;
 public double second;
 }
 . . .
 public static Pair minmax(double[] values) {
 . . .
 return new Pair(min, max); // no creating object
 }
}

ArrayAlg.Pair p = ArrayAlg.minmax(data);

U10M12004-OOP

Recap

Dr. Muhammad Umar Farooq Qaisar 75

• 6.1 Interfaces

• 6.2 Lambda Expressions

• 6.3 Inner Classes

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 76

What does “this” refer to inside a lambda expression?

A) The lambda itself
B) A static context
C) The outer class
D) An anonymous object

Correct Answer: C) The outer class

Explanation: Lambdas do not define a new scope; this refers to the outer class.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 77

Which interface can be used with a lambda expression?

A) An interface with multiple abstract methods
B) Any abstract class
C) A functional interface
D) A concrete class

Correct Answer: C) A functional interface

Explanation: Lambdas can only be used with functional interfaces (one abstract
method).

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 78

How does Java treat captured variables in lambdas?

A) As mutable copies
B) As references
C) As static constants
D) As final or effectively final values

Correct Answer: D) As final or effectively final values

Explanation: Captured variables must be effectively final for lambdas to use them.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 79

Which keyword is used to refer to the outer class instance from an
inner class?

A) super
B) this
C) outer
D) OuterClass.this

Correct Answer: D) OuterClass.this

Explanation: OuterClass.this disambiguates between the inner and outer class
instances.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 80

When must you use an inner class instead of a lambda?

A) To override multiple methods of an interface/class.
B) To use a functional interface.
C) To access static variables.
D) To throw checked exceptions.

Correct Answer: A) To override multiple methods of an interface/class

Explanation: Lambdas can only implement one abstract method.

	幻灯片 1: Object Oriented Programming Chapter 6 Interfaces, Lambda Expressions, and Inner Classes
	幻灯片 2: Contents
	幻灯片 3: 6.1.1 The Interface Concept
	幻灯片 4: 6.1.1 The Interface Concept
	幻灯片 5: Caution
	幻灯片 6: 6.1.1 The Interface Concept
	幻灯片 7: A Problem?
	幻灯片 8: 6.1.2 Properties of Interfaces
	幻灯片 9: 6.1.2 Properties of Interfaces
	幻灯片 10: 6.1.3 Interfaces and Abstract Classes
	幻灯片 11: 6.1.4 Static and Private Methods
	幻灯片 12: 6.1.4 Static and Private Methods
	幻灯片 13: 6.1.5 Default Methods
	幻灯片 14: 6.1.5 Default Methods
	幻灯片 15: 6.1.6 Resolving Default Method Conflicts
	幻灯片 16: The “Interfaces Clash” Rule
	幻灯片 17: The “Superclasses Win” Rule
	幻灯片 18: Private Interface Methods
	幻灯片 19: 6.1.7 Interfaces and Callbacks
	幻灯片 20: 6.1.7 Interfaces and Callbacks
	幻灯片 21: 6.1.8 The Comparator Interface
	幻灯片 22: 6.1.8 The Comparator Interface
	幻灯片 23: 6.1.9 Object Cloning
	幻灯片 24: 6.1.9 Object Cloning
	幻灯片 25: 6.1.9 Object Cloning
	幻灯片 26: 6.1.9 Object Cloning
	幻灯片 27: When to use Abstract Class?
	幻灯片 28: When to use Interface?
	幻灯片 29: Top Hat Question
	幻灯片 30: Top Hat Question
	幻灯片 31: Top Hat Question
	幻灯片 32: Top Hat Question
	幻灯片 33: Contents
	幻灯片 34: 6.2.1 Why Lambdas?
	幻灯片 35: 6.2.2 The Syntax of Lambda Expressions
	幻灯片 36: 6.2.2 The Syntax of Lambda Expressions
	幻灯片 37: 6.2.2 The Syntax of Lambda Expressions
	幻灯片 38: 6.2.3 Functional Interfaces
	幻灯片 39: 6.2.3 Functional Interfaces
	幻灯片 40: 6.2.3 Functional Interfaces
	幻灯片 41: 6.2.3 Functional Interfaces
	幻灯片 42: 6.2.4 Method References
	幻灯片 43: 6.2.4 Method References
	幻灯片 44: Note
	幻灯片 45: “this” and “super” in Method References
	幻灯片 46: 6.2.5 Constructor References
	幻灯片 47: 6.2.5 Constructor References
	幻灯片 48: 6.2.6 Variable Scope
	幻灯片 49: 6.2.6 Variable Scope
	幻灯片 50: 6.2.6 Variable Scope
	幻灯片 51: 6.2.6 Variable Scope
	幻灯片 52: 6.2.6 Variable Scope
	幻灯片 53: 6.2.7 Processing Lambda Expressions
	幻灯片 54: 6.2.7 Processing Lambda Expressions
	幻灯片 55: 6.2.7 Processing Lambda Expressions
	幻灯片 56: 6.2.8 More about Comparators
	幻灯片 57: Contents
	幻灯片 58: What is Inner Class?
	幻灯片 59: 6.3.1 Use of an Inner Class to Access Object State
	幻灯片 60: 6.3.1 Use of an Inner Class to Access Object State
	幻灯片 61: 6.3.1 Use of an Inner Class to Access Object State
	幻灯片 62: 6.3.1 Use of an Inner Class to Access Object State
	幻灯片 63: 6.3.2 Special Syntax Rules for Inner Classes
	幻灯片 64: 6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?
	幻灯片 65: 6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?
	幻灯片 66: 6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?
	幻灯片 67: 6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?
	幻灯片 68: 6.3.4 Local Inner Classes
	幻灯片 69: 6.3.5 Accessing Variables from Outer Methods
	幻灯片 70: 6.3.5 Accessing Variables from Outer Methods
	幻灯片 71: 6.3.6 Anonymous Inner Classes
	幻灯片 72: 6.3.6 Anonymous Inner Classes
	幻灯片 73: 6.3.6 Anonymous Inner Classes
	幻灯片 74: 6.3.7 Static Inner Classes
	幻灯片 75: Recap
	幻灯片 76: Top Hat Question
	幻灯片 77: Top Hat Question
	幻灯片 78: Top Hat Question
	幻灯片 79: Top Hat Question
	幻灯片 80: Top Hat Question

