
U10M12004-OOP

Object Oriented 
Programming

Chapter 7
Exceptions

Slides partially adapted from lecture 
notes by Cay Horstmann

Dr. Muhammad Umar Farooq Qaisar

15th April 2025



U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar

• 7.1 Dealing with Errors

• 7.2 Catching Exceptions

• 7.3 Tips for Using Exceptions

2



U10M12004-OOP

7.1 Dealing with Errors

Dr. Muhammad Umar Farooq Qaisar

• When an error occurs, your program can:
• Return to a safe state and allow the user to execute 

other commands.

• Save the user's work and terminate the program.

• What kind of errors do you need to consider?
1. User input errors.

2. Device errors. 

3. Physical limitations.

4. Code errors.

3



U10M12004-OOP

7.1 Dealing with Errors

Dr. Muhammad Umar Farooq Qaisar

1. User input errors. In addition to the inevitable typos, some users like to 

blaze their own trail instead of following directions. Suppose, for 

example, that a user asks to connect to a URL that is syntactically wrong. 

Your code should check the syntax, but suppose it does not. Then the 

network layer will complain.

2. Device errors. Hardware does not always do what you want it to. The 

printer may be turned off. A web page may be temporarily unavailable. 

Devices will often fail in the middle of a task. For example, a printer 

may run out of paper during printing.

3. Physical limitations. Disks can fill up; you can run out of available 

memory.

4. Code errors. A method may not perform correctly. For example, it could 

deliver wrong answers or use other methods incorrectly. Computing an 

invalid array index, trying to find a nonexistent entry in a hash table, or 

trying to pop an empty stack are all examples of a code error.

4



U10M12004-OOP

7.1 Dealing with Errors

Dr. Muhammad Umar Farooq Qaisar

• What can you do when an error occurs?
1. Return an error code.

o methods that read information back from files often return a -
1 end-of-file value marker rather than a standard character. 
This can be an efficient method for dealing with many 
exceptional conditions. Another common return value to 
denote an error condition is the null reference.

o Unfortunately, it is not always possible to return an error code. 
There may be no obvious way of distinguishing valid and 
invalid data. A method returning an integer cannot simply 
return -1 to denote the error; the value -1 might be a 
perfectly valid result.

2. Terminate the program.
o You may want to terminate the program, but this is not a good 

idea.

5



U10M12004-OOP

7.1 Dealing with Errors

Dr. Muhammad Umar Farooq Qaisar

1. Throw an exception.

o Java allows every method an alternative exit path if it is 
unable to complete its task in the normal way. In this 
situation, the method does not return a value. 

o Instead, it throws an object that encapsulates the error 
information. Note that the method exits immediately; it 
does not return its normal (or any) value. 

o Moreover, execution does not resume at the code that 
called the method; instead, the exception-handling 
mechanism begins its search for an exception handler 
that can deal with this particular error condition.

• Exceptions have their own syntax and are part of a 
special inheritance hierarchy.

6



U10M12004-OOP

7.1.1 The Classification of Exceptions

Dr. Muhammad Umar Farooq Qaisar

• In Java, an exception object is always an instance of a 
class derived from Throwable.

• You could create your own exception classes if those built 
into Java do not suit your needs.

Figure 7.1 is a 
simplified diagram 
of the exception 
hierarchy in Java. 

7



U10M12004-OOP

Error

Dr. Muhammad Umar Farooq Qaisar

• The Error hierarchy describes internal errors and 
resource exhaustion situations inside the Java 
runtime system. 

• You should not throw an object of this type. 

• There is little you can do if such an internal error 
occurs, beyond notifying the user and trying to 
terminate the program gracefully. 

• These situations are quite rare.

8



U10M12004-OOP

Exception

Dr. Muhammad Umar Farooq Qaisar

• RuntimeException: happens when you made a 
programming error.

• A bad cast

• An out-of-bounds array access

• A null pointer access

• Other exception: occurs because a bad thing happened, 
e.g., an I/O error.

• Trying to read past the end of a file

• Trying to open a file that doesn’t exist

• Trying to find a Class object for a string that does not denote an 
existing class

The rule “If it is a RuntimeException, it was your fault” works 
pretty well.

9



U10M12004-OOP

Exception

Dr. Muhammad Umar Farooq Qaisar

• You could have avoided that 
ArrayIndexOutOfBoundsException by testing the array index 
against the array bounds. 

Fix (Check Bounds First):

The rule “If it is a RuntimeException, it was your fault” works 
pretty well.

int[] numbers = {10, 20, 30};
System.out.println(numbers[3]); // Throws ArrayIndexOutOfBoundsException (max index 
is 2)

int index = 3;
if (index >= 0 && index < numbers.length) { // Check if index is valid
    System.out.println(numbers[index]);
} else {
    System.out.println("Invalid index!");
}

10



U10M12004-OOP

Exception

Dr. Muhammad Umar Farooq Qaisar

• The NullPointerException would not have happened had you 
checked whether the variable was null before using it.

Fix (Check for Null First):

• Any exception that derives from the class Error or the 
class RuntimeException is unchecked exception. All 
other exceptions are called checked exceptions.
• The compiler checks that you provide exception handlers for all 

checked exceptions.

String name = null;
System.out.println(name.length()); // Throws NullPointerException (name is null)

if (name != null) { // Check if object exists
    System.out.println(name.length());
} else {

    System.out.println("Name is null!");
}

11



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Muhammad Umar Farooq Qaisar

• A Java method can throw an exception if it encounters a 
situation it cannot handle.
• “A method will not only tell the Java compiler what values it can 

return, it is also going to tell the compiler what can go wrong.”

• For example, code that attempts to read from a file knows that the 
file might not exist or that it might be empty. The code that tries to 
process the information in a file therefore will need to notify the 
compiler that it can throw some sort of IOException.

• The place where your method can throw an exception is 
the header of the method.
• For example, here is the declaration of one of the constructors of 

the FileInputStream class from the standard library.

public FileInputStream(String name) throws FileNotFoundException

12



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Muhammad Umar Farooq Qaisar

• There are four situations that an exception is thrown:
1. Call a method that throws a checked exception.

o Some methods declare that they might fail (e.g., reading a file).

2. Detect an error and throw a checked exception with the 
throw statement.

o You detect an error and forcefully throw an exception.

3. Make a programming error, such as a[-1] = 0 that 
gives rise to an unchecked exception.

o Bugs like out-of-bounds access (a[-1]) or NullPointerException.

public FileInputStream(String name) throws FileNotFoundException

if (input < 0) {
    throw new IllegalArgumentException("Input must be positive!");}

13



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Muhammad Umar Farooq Qaisar

4. An internal error occurs in the virtual machine or runtime 
library.
o Rare, severe failures (e.g., OutOfMemoryError, StackOverflowError).

• If you write a method that might throw such an exception, 
you need to declare that fact.

int[] a = new int[5];
a[-1] = 10; // Throws ArrayIndexOutOfBoundsException

14



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Muhammad Umar Farooq Qaisar

• Add a throws clause:

• A throws clause can list multiple exceptions:

• Don't declare unchecked exceptions:

• Instead, fix your code so that this doesn't happen!

public Image loadImage(String s) throws IOException

public Image loadImage(String s) throws FileNotFoundException, 
EOFException

void drawImage(int i) throws ArrayIndexOutOfBoundsException
 // bad style

15



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Muhammad Umar Farooq Qaisar

• In summary, a method must declare all the checked 
exceptions that it might throw. 
• Unchecked exceptions are either beyond your control (Error) or 

result from conditions that you should not have allowed in the first 
place (RuntimeException). 

• If your method fails to faithfully declare all checked exceptions, the 
compiler will issue an error message. 

• Of course, as you have already seen in quite a few examples, 
instead of declaring the exception, you can also catch it. Then the 
exception won’t be thrown out of the method, and no throws 
specification is necessary. 

When a method in a class declares that it throws an 
exception that is an instance of a particular class, it may 
throw an exception of that class or of its subclasses. 

16



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Muhammad Umar Farooq Qaisar

• If a method says it can throw an exception of a certain type, 
Java also allows it to throw exceptions of any subclass of 
that type.

• readFile() declares it throws IOException.
• FileNotFoundException is a subclass of IOException.
• So it's valid to throw FileNotFoundException.

When a method in a class declares that it throws an 
exception that is an instance of a particular class, it may 
throw an exception of that class or of its subclasses. 

public void readFile() throws IOException {

    throw new FileNotFoundException("File not found");

}

17



U10M12004-OOP

7.1.3 How to Throw an Exception

Dr. Muhammad Umar Farooq Qaisar

• Suppose something terrible happened in your code. You read 
a header that promised Content-length: 1024, but you got an 
end of file after 733 characters.
• You may decide this situation is so abnormal that you want to throw 

an exception.

• Find an exception type to throw.

• The Java library has an EOFException with description: 
“Signals that an EOF has been reached unexpectedly during 
input.”

• Construct an object and throw it:

• Or, if you prefer:

throw new EOFException();

var e = new EOFException();
throw e;

18



U10M12004-OOP

7.1.3 How to Throw an Exception

Dr. Muhammad Umar Farooq Qaisar

• Here is how it all fits together:

• Or better, provide a reason:

String readData(Scanner in) throws EOFException{
 . . .
 while (. . .){
  if (!in.hasNext()) // EOF encountered
  {
   if (n < len)
    throw new EOFException();
  }
  . . .
 }
 return s;
}

String gripe = "Content-length: " + len + ", Received: " + n;
throw new EOFException(gripe);

19



U10M12004-OOP

7.1.3 How to Throw an Exception

Dr. Muhammad Umar Farooq Qaisar

• As you can see, throwing an exception is easy if one of the 
existing exception classes works for you. In this case:

1. Find an appropriate exception class.

2. Make an object of that class.

3. Throw it.

• Once a method throws an exception, it does not return to its 
caller. 
• This means you do not have to worry about cooking up a default 

return value or an error code.

20



U10M12004-OOP

7.1.4 Creating Exception Classes

Dr. Muhammad Umar Farooq Qaisar

• Create your own exception class if your situation isn’t 
covered by an exception in the standard library.
• Just derive it from Exception, or from a child class of 
Exception such as IOException.

• Then you can throw an object of your own exception type:

String readData(BufferedReader in) throws FileFormatException{
 while (. . .){
  if (ch == -1) // EOF encountered
  {
   if (n < len)
    throw new FileFormatException();
  }
 }
 return s;
}

class FileFormatException extends IOException {
 public FileFormatException() {}
 public FileFormatException(String gripe){ super(gripe); }
}

21



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q1: Which is a checked exception in Java?

A) NullPointerException
B) ArrayIndexOutOfBoundsException
C) IOException 
D) RuntimeException

Answer: C) IOException
Explanation: Checked exceptions (like IOException) must be declared or caught.

22



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q2: What does the throws keyword do?

A) Catches an exception.
B) Declares that a method might throw an exception.
C) Ignores exceptions.
D) Terminates the program.

Answer: B) Declares that a method might throw an exception.
Explanation: throws delegate exception handling to the caller method.

23



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q3: Which exception is thrown when accessing a null object’s 
method?

A) ArrayIndexOutOfBoundsException
B) NullPointerException
C) ClassCastException
D) IllegalStateException

Answer: B) NullPointerException
Explanation: NullPointerException occurs when calling methods on null.

24



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q4: How can you create a custom exception in Java?

A) Extend RuntimeException or Exception. 
B) Use the new Exception() constructor.
C) Define it inside the try block.
D) Java doesn’t support custom exceptions.

Answer: A) Extend RuntimeException or Exception. 
Explanation: Custom exceptions must extend Exception (checked) or 
RuntimeException (unchecked).

25



U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar

• 7.1 Dealing with Errors

• 7.2 Catching Exceptions

• 7.3 Tips for Using Exceptions

26



U10M12004-OOP

7.2.1 Catching an Exception

Dr. Muhammad Umar Farooq Qaisar

• If an exception is thrown, and nobody catches it, the program 
will terminate and print a message to the console.

• Use a try/catch block to catch an exception:

• If any code inside the try block throws an exception of the 
class specified in the catch clause, then

1. The program skips the remainder of the code in the try block.

2. The program executes the handler code inside the catch 
clause.

try {
 code
 more code
 more code
}
catch (ExceptionType e){
 handler for this type
}

27



U10M12004-OOP

7.2.1 Catching an Exception

Dr. Muhammad Umar Farooq Qaisar

• If none of the code inside the try block throws an 
exception, then the program skips the catch clause.

• If any of the code in a method throws an exception of a 
type other than the one named in the catch clause, this 
method exits immediately. 

public void read(String filename) {
 try {
  var in = new FileInputStream(filename);
  int b;
  while ((b = in.read()) != -1) {
   process input
  }
 }
 catch (IOException exception) {
  exception.printStackTrace();
 }
}

28



U10M12004-OOP

7.2.1 Catching an Exception

Dr. Muhammad Umar Farooq Qaisar

• Only do this if you can actually do something useful when 
the exception occurs.

 

• There is no shame in propagating exceptions.

• One exception: Sometimes you need to catch an 
exception when you override a method that is declared to 
throw no checked exceptions.
• You are not allowed to add more throws specifiers to a subclass 

method than are present in the superclass method.

public void read(String filename) throws IOException{
 var in = new FileInputStream(filename);
 int b;
 while ((b = in.read()) != -1){
  process input
 }
}

29



U10M12004-OOP

7.2.2 Catching Multiple Exceptions

Dr. Muhammad Umar Farooq Qaisar

• You can catch multiple exception types in a try block and 
handle each type differently. Use a separate catch clause for 
each type, as in the following example:

try {
 code that might throw exceptions
}
catch (FileNotFoundException e) {
 emergency action for missing files
}
catch (UnknownHostException e) {
 emergency action for unknown hosts
}
catch (IOException e) {
 emergency action for all other I/O problems
}

30



U10M12004-OOP

7.2.2 Catching Multiple Exceptions

Dr. Muhammad Umar Farooq Qaisar

• The exception object may contain information about the 
nature of the exception. 

• To find out more about the object, try e.getMessage() to get 
the detailed error message (if there is one), or 
e.getClass().getName() to get the actual type of the exception 
object.

• Work with the inheritance hierarchy of exceptions: Catch 
more specific exceptions before more general ones.

e.getMessage() // to get the detailed error message
e.getClass().getName() // to get the actual type of the exception object

31



U10M12004-OOP

New Feature of Java 7

Dr. Muhammad Umar Farooq Qaisar

• As of Java 7, you can catch multiple exception types in the 
same catch clause. 
• For example, suppose that the action for missing files and unknown 

hosts is the same. Then you can combine the catch clauses:

• This feature is only needed when catching exception types that are 
not subclasses of one another.

• If one exception is a subclass of another, catching the parent exception will also 
handle the child.

• The multi-catch feature (|) is only useful when the exceptions are unrelated (no 
inheritance between them).

try {
 code that might throw exceptions
} catch (FileNotFoundException | UnknownHostException e) {
 emergency action for missing files and unknown hosts
} catch (IOException e) {
 emergency action for all other I/O problems
}

32



U10M12004-OOP

Notes

Dr. Muhammad Umar Farooq Qaisar

• When you catch multiple exceptions, the exception 
variable is implicitly final. 
• For example, you cannot assign a different value to e in 

the body of the clause.

• Catching multiple exceptions doesn’t just make your 
code look simpler but also more efficient. 
• The generated bytecodes contain a single block for the 

shared catch clause.

catch (FileNotFoundException | UnknownHostException e) { ...}

33



U10M12004-OOP

7.2.3 Rethrowing and Chaining Exceptions

Dr. Muhammad Umar Farooq Qaisar

• Sometimes you want to catch an exception and rethrow it as a different 
type:

• You can throw an exception in a catch clause. Typically, you do this when 
you want to change the exception type. 

• If you build a subsystem that other programmers use, it makes a lot of sense 
to use an exception type that indicates a failure of the subsystem. 

• An example of such an exception type is the ServletException. The code that 
executes a servlet may not want to know in minute detail what went wrong, 
but it definitely wants to know that the servlet was at fault.

• Here is how you can catch an exception and rethrow it:

• Here, the ServletException is constructed with the message text of the 
exception.

try {
 access the database
}
catch (SQLException e){
 throw new ServletException("database error: " + e.getMessage());
}

34



U10M12004-OOP

7.2.3 Rethrowing and Chaining Exceptions

Dr. Muhammad Umar Farooq Qaisar

• Better choice: Set the original exception as the cause.

• The cause can later be retrieved with the getCause method.

• This wrapping technique is highly recommended. It allows 
you to throw high-level exceptions in subsystems without 
losing the details of the original failure.

. . .
catch (SQLException original) {                  // (1) Original error occurs
    var e = new ServletException("database error"); // (2) Create new wrapper exception
    e.initCause(original);                       // (3) Attach original to wrapper
    throw e;                                     // (4) Throw the wrapper
}

Throwable original = caughtException.getCause();  // (5) Extract the 
original SQLException

35



U10M12004-OOP

7.2.3 Rethrowing and Chaining Exceptions

Dr. Muhammad Umar Farooq Qaisar

• Original Error:
• An SQLException happens (e.g., database connection fails).

• Wrap It:
• You create a new ServletException (to add context like 

"database error").

• Chain Them:
• .initCause(original) links the SQLException to the new 

ServletException (like saying: "This ServletException happened 
because of that SQLException").

• Throw the Wrapper:
• The ServletException (now carrying the SQLException inside it) 

propagates up.

• Later, Unwrap It:
• When you catch the ServletException elsewhere, .getCause() 

retrieves the original SQLException you attached earlier.

36



U10M12004-OOP

7.2.3 Rethrowing and Chaining Exceptions

Dr. Muhammad Umar Farooq Qaisar

• If you just want to log an exception and rethrow it 
without any change:

try {
 access the database
} catch (Exception e) {
 logger.log(level, message, e);
 throw e;
}

37



U10M12004-OOP

7.2.4 The finally Clause

Dr. Muhammad Umar Farooq Qaisar

• Suppose your code writes a resource that needs to be 
relinquished:

• If the . . . code throws an exception, the in.close() 
statement is never executed.

• Remedy: Put it in a finally clause:

• You can use the finally clause without a catch clause.

var in = new FileInputStream(. . .);
. . .
in.close();

InputStream in = . . .;
try {
 . . .
} finally{
 in.close();
}

38



U10M12004-OOP

7.2.4 The finally Clause

Dr. Muhammad Umar Farooq Qaisar

• Let’s look at the three possible situations in which the 
program will execute the finally clause.

var in = new FileInputStream(. . .);
try {
 // 1
 code that might throw exceptions
 // 2
} catch (IOException e) {
 // 3
 show error message
 // 4
} finally {
 // 5
 in.close();
} 
// 6

39



U10M12004-OOP

7.2.4 The finally Clause

Dr. Muhammad Umar Farooq Qaisar

1. The code throws no exceptions. In this case, the program first executes all the code in the 
try block. Then, it executes the code in the finally clause. Afterwards, execution 
continues with the first statement after the finally clause. In other words, execution 
passes through points 1, 2, 5, and 6. 

2. The code throws an exception that is caught in a catch clause—in our case, an 
IOException. For this, the program executes all code in the try block, up to the point at 
which the exception was thrown. The remaining code in the try block is skipped. The 
program then executes the code in the matching catch clause, and then the code in the 
finally clause. 

3. If the catch clause does not throw an exception, the program executes the first line after 
the finally clause. In this scenario, execution passes through points 1, 3, 4, 5, and 6. 

4. If the catch clause throws an exception, then the exception is thrown back to the caller of 
this method, and execution passes through points 1, 3, and 5 only. 

5. The code throws an exception that is not caught in any catch clause. Here, the program 
executes all code in the try block until the exception is thrown. The remaining code in the 
try block is skipped. Then, the code in the finally clause is executed, and the exception is 
thrown back to the caller of this method. Execution passes through points 1 and 5 only.

40



U10M12004-OOP

7.2.4 The finally Clause

Dr. Muhammad Umar Farooq Qaisar

• The in.close() statement in the finally clause is 
executed whether or not an exception is encountered in 
the try block. 

• If an exception is encountered, it is rethrown and must be 
caught in another catch clause.

InputStream in = . . .;
try {
 try {
  code that might throw exceptions
 } finally{
  in.close();
 }
} catch (IOException e) {
 show error message
}

41



U10M12004-OOP

7.2.5 The try-with-Resources Statement

Dr. Muhammad Umar Farooq Qaisar

•  As of Java 7, there is a useful shortcut to the code pattern.

• The Resource class must implement the AutoCloseable 
interface, which has a single method:

• The try-with-Resources statement has the form in its 
simplest variant:

open a resource
try {
 work with the resource
} finally {
 close the resource
}

void close() throws Exception

try (Resource res = . . .) {
 work with res
}

42



U10M12004-OOP

7.2.5 The try-with-Resources Statement

Dr. Muhammad Umar Farooq Qaisar

• You can specify multiple resources.

• No matter how the block exits, both in and out are 
closed.

• As of Java 9, you can provide previously declared 
effectively final variables in the try header:

try (var in = new Scanner (
  new FileInputStream("/usr/share/dict/words"), StandardCharsets.UTF_8);
  var out = new PrintWriter("out.txt", StandardCharsets.UTF_8)) {
 while (in.hasNext())
  out.println(in.next().toUpperCase());
}

public static void printAll(String[] lines, PrintWriter out) {
 try (out) { // effectively final variable
  for (String line : lines)
   out.println(line);
 } // out.close() called here
}

43



U10M12004-OOP

7.2.5 The try-with-Resources Statement

Dr. Muhammad Umar Farooq Qaisar

• A difficulty arises when the try block throws an exception 
and the close method also throws an exception. 
• The try-with-resources statement handles this situation quite 

elegantly. 

• The original exception is rethrown, and any exceptions thrown by 
close methods are considered “suppressed.” 

• They are automatically caught and added to the original exception 
with the addSuppressed method. 

• If you are interested in them, call the getSuppressed method 
which yields an array of the suppressed expressions from close 
methods.

You don’t want to program this by hand. Use the try-with-
resources statement whenever you need to close a resource.

44



U10M12004-OOP

7.2.6 Analyzing Stack Trace Elements

Dr. Muhammad Umar Farooq Qaisar

• When an exception terminates a program, a stack trace is 
displayed.
• List of pending method calls.

• You can access the text description of a stack trace:

• You can iterate over the stack frames with the 
StackWalker class:

• If you want to process the 
Stream<StackWalker.StackFrame> lazily, call

var t = new Throwable();
var out = new StringWriter();
t.printStackTrace(new PrintWriter(out));
String description = out.toString();

StackWalker walker = StackWalker.getInstance();
walker.forEach(frame -> analyze frame)

walker.walk(stream -> process stream)

45



U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar

• 7.1 Dealing with Errors

• 7.2 Catching Exceptions

• 7.3 Tips for Using Exceptions

46



U10M12004-OOP

Tips for Using Exceptions

Dr. Muhammad Umar Farooq Qaisar

1. Exception handling is not supposed to replace a simple test.

2. Do not micromanage exceptions.

try{
 s.pop();
}
catch (EmptyStackException e){
}

if (!s.empty()) s.pop();

try{
 for (i = 0; i < 100; i++){
  n = s.pop();
  out.writeInt(n);
 }
}
catch (IOException e){
 // problem writing to file
} 
catch (EmptyStackException e){
 // stack was empty
}

PrintStream out;
Stack s;
for (i = 0; i < 100; i++){
 try{ n = s.pop();}
 catch (EmptyStackException e){
  // stack was empty
 }
 try{
  out.writeInt(n);
 }
 catch (IOException e){
  // problem writing to file
 }
}

47



U10M12004-OOP

Tips for Using Exceptions

Dr. Muhammad Umar Farooq Qaisar

3. Make good use of the exception hierarchy:
• Don’t just throw a RuntimeException. Find an 

appropriate subclass or create your own.
• Don’t just catch Throwable.
• Respect the difference between checked and unchecked 

exceptions.

• Do not hesitate to turn an exception into another exception 
that is more appropriate.

4. Do not squelch exceptions:

public Image loadImage(String s) {
 try {
  code that threatens to throw checked exceptions
 } catch (Exception e){

 } // so there
}

48



U10M12004-OOP

Tips for Using Exceptions

Dr. Muhammad Umar Farooq Qaisar

5. When you detect an error, “tough love” works better 
than indulgence.
• When something is very wrong, throw an exception.
• Don't return an error code or a dummy value.
• Return values must be handled by the caller. Exceptions can 

be handled anywhere upstream.

6. Propagating exceptions is not a sign of shame.
• Don't try to handle an exception that you can't remedy.
• Just let it be rethrown so that it can reach a competent 

handler.
public void readStuff(String filename) throws IOException {
 var in = new FileInputStream(filename, StandardCharsets.UTF_8);
 . . .
}

These two rules can be summarized as: “throw early, 
catch late.”

49



U10M12004-OOP

Recap

Dr. Muhammad Umar Farooq Qaisar

• 7.1 Dealing with Errors

• 7.2 Catching Exceptions

• 7.3 Tips for Using Exceptions

50



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q5: What is the primary purpose of a catch block in Java?

A) To prevent exceptions from occurring.
B) To handle and recover from specific exceptions. 
C) To terminate the program gracefully.
D) To replace if-else statements.

Answer: B) To handle and recover from specific exceptions. 
Explanation: catch blocks define how to recover from or log exceptions.

51



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q6: What happens if an exception is thrown but not caught by any 
catch block?

A) The program ignores the exception and continues.
B) The JVM converts it to a warning.
C) The program crashes and prints a stack trace. 
D) The exception is automatically rethrown.

Answer: C) The program crashes and prints a stack trace.  
Explanation: Uncaught exceptions propagate up the call stack and terminate the 
program.

52



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q7: Which of these is the correct syntax for catching multiple 
exceptions in one catch block?

A) catch (Exception1 || Exception2 e)
B) catch (Exception1, Exception2 e)
C) catch (Exception1 | Exception2 e)
D) catch (Exception1 & Exception2 e)

Answer: C) catch (Exception1 | Exception2 e)  
Explanation: Java uses | to separate exception types in multi-catch (e.g., 
IOException | SQLException).

53



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q8: When should you use a finally block?

A) Only when an exception occurs.
B) To execute code regardless of whether an exception occurs. 
C) To replace catch blocks.
D) To throw new exceptions.

Answer: B) To execute code regardless of whether an exception occurs.   
Explanation: finally runs whether the try succeeds or fails (e.g., closing resources).

54



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q9: What is the output of this code?

try { 

    throw new RuntimeException("Oops"); 

} catch (RuntimeException e) { 

    System.out.println("Caught"); 

    throw e; 

} 

A) "Caught" (then the program ends normally).

B) "Caught" (then the program crashes with "Oops"). 

C) Compiler error (can’t rethrow e).

D) No output.

Answer: B) To execute code regardless of whether an exception occurs.   
Explanation: finally runs whether the try succeeds or fails (e.g., closing resources).

55

throw new RuntimeException("Oops")

A RuntimeException is thrown explicitly.

catch (RuntimeException e)

The exception is caught, and "Caught" is printed.

throw e;

The same exception is rethrown, causing the 
program to terminate abnormally with the error.



U10M12004-OOP

Top Hat Questions

Dr. Muhammad Umar Farooq Qaisar

Q10: What is the purpose of try-with-resources?

A) To catch multiple exceptions at once.
B) To automatically close resources (like files) after use. 
C) To replace all catch blocks.
D) To hide exceptions.

Answer: B) To automatically close resources (like files) after use. 
Explanation: try-with-resources ensures AutoCloseable resources (e.g., 
FileInputStream) are closed.

56


	Slide 1: Object Oriented Programming  Chapter 7 Exceptions 
	Slide 2: Contents
	Slide 3: 7.1 Dealing with Errors
	Slide 4: 7.1 Dealing with Errors
	Slide 5: 7.1 Dealing with Errors
	Slide 6: 7.1 Dealing with Errors
	Slide 7: 7.1.1 The Classification of Exceptions
	Slide 8: Error
	Slide 9: Exception
	Slide 10: Exception
	Slide 11: Exception
	Slide 12: 7.1.2 Declaring Checked Exceptions
	Slide 13: 7.1.2 Declaring Checked Exceptions
	Slide 14: 7.1.2 Declaring Checked Exceptions
	Slide 15: 7.1.2 Declaring Checked Exceptions
	Slide 16: 7.1.2 Declaring Checked Exceptions
	Slide 17: 7.1.2 Declaring Checked Exceptions
	Slide 18: 7.1.3 How to Throw an Exception
	Slide 19: 7.1.3 How to Throw an Exception
	Slide 20: 7.1.3 How to Throw an Exception
	Slide 21: 7.1.4 Creating Exception Classes
	Slide 22: Top Hat Questions
	Slide 23: Top Hat Questions
	Slide 24: Top Hat Questions
	Slide 25: Top Hat Questions
	Slide 26: Contents
	Slide 27: 7.2.1 Catching an Exception
	Slide 28: 7.2.1 Catching an Exception
	Slide 29: 7.2.1 Catching an Exception
	Slide 30: 7.2.2 Catching Multiple Exceptions
	Slide 31: 7.2.2 Catching Multiple Exceptions
	Slide 32: New Feature of Java 7
	Slide 33: Notes
	Slide 34: 7.2.3 Rethrowing and Chaining Exceptions
	Slide 35: 7.2.3 Rethrowing and Chaining Exceptions
	Slide 36: 7.2.3 Rethrowing and Chaining Exceptions
	Slide 37: 7.2.3 Rethrowing and Chaining Exceptions
	Slide 38: 7.2.4 The finally Clause
	Slide 39: 7.2.4 The finally Clause
	Slide 40: 7.2.4 The finally Clause
	Slide 41: 7.2.4 The finally Clause
	Slide 42: 7.2.5 The try-with-Resources Statement
	Slide 43: 7.2.5 The try-with-Resources Statement
	Slide 44: 7.2.5 The try-with-Resources Statement
	Slide 45: 7.2.6 Analyzing Stack Trace Elements
	Slide 46: Contents
	Slide 47: Tips for Using Exceptions
	Slide 48: Tips for Using Exceptions
	Slide 49: Tips for Using Exceptions
	Slide 50: Recap
	Slide 51: Top Hat Questions
	Slide 52: Top Hat Questions
	Slide 53: Top Hat Questions
	Slide 54: Top Hat Questions
	Slide 55: Top Hat Questions
	Slide 56: Top Hat Questions

