
U10M12004-OOP

Object Oriented 
Programming

Chapter 8
Collections

Slides partially adapted from lecture 
notes by Cay Horstmann

Dr. Muhammad Umar Farooq Qaisar

22nd April 2025



U10M12004-OOP

Questions

Dr. Muhammad Umar Farooq Qaisar 2

• The data structures can make a BIG difference 
when you try to implement methods in a natural 
style or are concerned with performance.

1. Do you need to search quickly through thousands (or 
even millions) of sorted items? 

2. Do you need to rapidly insert and remove elements in 
the middle of an ordered sequence? 

3. Do you need to establish associations between keys 
and values?

• Different from the Data Structures course, we will 
skip the theory and just show you how to use the 
collection classes in the standard library.



U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 3

• 8.1 Java Collections Framework

• 8.2 Concrete Collections

• 8.3 Maps



U10M12004-OOP

8.1 The Java Collections Framework

Dr. Muhammad Umar Farooq Qaisar 4

• The initial release of Java supplied only a small set of 
classes for the most useful data structures: Vector, Stack, 
Hashtable, BitSet, and the Enumeration interface 
that provides an abstract mechanism for visiting elements 
in an arbitrary container. 
• That was certainly a wise choice—it takes time and skill to come 

up with a comprehensive collection class library.

• As of Java 1.2, the designers felt that the time had come to 
roll out a full-fledged set of data structures. 
• The library should be small and easy to learn.



U10M12004-OOP

8.1.1 Separating Collection Interfaces and Implementation

Dr. Muhammad Umar Farooq Qaisar 5

• The Java collection framework separates interfaces and 
implementations.
• A queue interface provides abstract specification:

public interface Queue<E> { // simplified form
 void add(E element);
 E remove();
 int size();
}

“first in, first out”



U10M12004-OOP

8.1.1 Separating Collection Interfaces and Implementation

Dr. Muhammad Umar Farooq Qaisar 6

• A collection interface can have multiple implementing 
classes that implement the Queue interface.

public class CircularArrayQueue<E> implements Queue<E>
public class LinkedListQueue<E> implements Queue<E>
 //not actual library classes



U10M12004-OOP

8.1.1 Separating Collection Interfaces and Implementation

Dr. Muhammad Umar Farooq Qaisar 7

• The interface tells you nothing about how the queue is 
implemented. 

• Of the two common implementations of a queue, one uses 
a “circular array” and one uses a linked list.



U10M12004-OOP

8.1.1 Separating Collection Interfaces and Implementation

Dr. Muhammad Umar Farooq Qaisar 8

• Each implementation can be expressed by a class that 
implements the Queue interface.
public class CircularArrayQueue<E> implements Queue<E> // not an actual library 
class
{
 private int head;
 private int tail;
 CircularArrayQueue(int capacity) { . . . }
 public void add(E element) { . . . }
 public E remove() { . . . }
 public int size() { . . . }
 private E[] elements;
}

public class LinkedListQueue<E> implements Queue<E> // not an actual library class
{
 private Link head;
 private Link tail;
 LinkedListQueue() { . . . }
 public void add(E element) { . . . }
 public E remove() { . . . }
 public int size() { . . . }
}



U10M12004-OOP

8.1.1 Separating Collection Interfaces and Implementation

Dr. Muhammad Umar Farooq Qaisar 9

• Always use the interface type to hold the collection 
reference after creation:

• If you want to use a different implementation, change your 
program in the constructor call.

• A circular array is somewhat more efficient than a linked list.

• The circular array is a bounded collection—it has a finite capacity.

• If you don’t have an upper limit on the number of objects that your 
program will collect, you may be better off with a linked list 
implementation after all.

Queue<Customer> expressLane = new CircularArrayQueue<>(100);
expressLane.add(new Customer("Harry"));

Queue<Customer> expressLane = new LinkedListQueue<>();
expressLane.add(new Customer("Harry"));



U10M12004-OOP

8.1.2 The Collection Interface

Dr. Muhammad Umar Farooq Qaisar 10

• Collection<E> has two fundamental methods:

• The add method adds an element to the collection and 
returns true or false that indicates if the element added 
changes the collection.

• The iterator method returns an object that implements 
the Iterator interface. You can use the iterator object to 
visit the elements in the collection one by one.

public interface Collection<E> {
 boolean add(E element);
 Iterator<E> iterator();
 . . .
}



U10M12004-OOP

8.1.3 Iterators

Dr. Muhammad Umar Farooq Qaisar 11

• The Iterator interface has four methods:

• By repeatedly calling the next method, you can visit the elements from 
the collection one by one. 

• However, if you reach the end of the collection, the next method 

throws a NoSuchElementException. 

• Therefore, you need to call the hasNext method before calling next. 
That method returns true if the iterator object still has more elements 
to visit. 

• If you want to inspect all elements in a collection, request an iterator 
and then keep calling the next method while hasNext returns true.

public interface Iterator<E> {
 E next();
 boolean hasNext();
 void remove();
 default void forEachRemaining(Consumer<? super E> action);
}



U10M12004-OOP

8.1.3 Iterators

Dr. Muhammad Umar Farooq Qaisar 12

• Get an iterator from a collection to visit all elements:

• More concisely as the “for each” loop:

• The compiler simply translates the “for each” loop into a 
loop with an iterator.

Collection<String> c = . . .;
Iterator<String> iter = c.iterator();
while (iter.hasNext()) {
 String element = iter.next();
 // do something with element
}

for (String element : c) {
 // do something with element
}



U10M12004-OOP

8.1.3 Iterators

Dr. Muhammad Umar Farooq Qaisar 13

• The “for each” loop works with any object that implements 
the Iterable interface with a single abstract method:

• The Collection interface extends the Iterable  interface.
• Therefore, you can use the “for each” loop with any 

collection in the standard library
• Or without any loop:

• The order in which the elements are visited depends on the 
collection type.

• The only way to look up an element is to call next, and that lookup 
advances the position.

iterator.forEachRemaining(element -> do something with element);

public interface Iterable<E> {
 Iterator<E> iterator();
 . . .
}



U10M12004-OOP

8.1.3 Iterators

Dr. Muhammad Umar Farooq Qaisar 14

• Think of Java iterators as being between elements. 
• When you call next, the iterator jumps over the next element, and 

returns a reference to the element that it just passed.



U10M12004-OOP

8.1.3 Iterators

Dr. Muhammad Umar Farooq Qaisar 15

• The remove method removes the element that was just 
returned by next:

• Caution: Calling remove twice in a row without calling next in 
between is an error.

Iterator<String> it = c.iterator();
it.next();   // skip over the first element
it.remove(); // now remove it

it.remove();
it.remove(); // ERROR

it.remove();
it.next();
it.remove(); // OK



U10M12004-OOP

8.1.4 Generic Utility Methods

Dr. Muhammad Umar Farooq Qaisar 16

• The Collection and Iterator interfaces are generic.
• You can write utility methods that operate on any kind of 

collection. 

• The Collection interface declares quite a few useful 
methods that all implementing classes must supply.

int size()
boolean isEmpty()
boolean contains(Object obj)
boolean containsAll(Collection<?> c)
boolean equals(Object other)
boolean addAll(Collection<? extends E> from)
boolean remove(Object obj)
boolean removeAll(Collection<?> c)
void clear()
boolean retainAll(Collection<?> c)
Object[] toArray()
<T> T[] toArray(T[] arrayToFill)



U10M12004-OOP

8.1.4 Generic Utility Methods

Dr. Muhammad Umar Farooq Qaisar 17



U10M12004-OOP

8.1.4 Generic Utility Methods

Dr. Muhammad Umar Farooq Qaisar 18

• To make life easier for implementors, the library supplies a class 
AbstractCollection.

•  A concrete collection class can extend the AbstractCollection. 

• The concrete collection class can supply an iterator method, but the 
contains method has been taken care of by the AbstractCollection 
superclass. 

• However, if the subclass has a more efficient way of implementing contains, 
it is free to do so.

public abstract class AbstractCollection<E>
implements Collection<E> {
. . .
public abstract Iterator<E> iterator();
public boolean contains(Object obj) {

for (E element : this)             // calls iterator()
if (element.equals(obj))

return true;
return false;

}
}



U10M12004-OOP

8.1.5 Interfaces in Collections

Dr. Muhammad Umar Farooq Qaisar 19

• The Java collections framework defines a number of interfaces for different 
types of collections.

Two fundamental 
interfaces for 
collections: 
Collection and Map



U10M12004-OOP

8.1.5 Interfaces in Collections

Dr. Muhammad Umar Farooq Qaisar 20

• Collection holds elements, 
Map holds key/value pairs.

• List: Ordered collection.

• Set: Unordered collection 
without duplicates.

• SortedSet/SortedMap: 
Traversed in sorted order.

• NavigableSet/NavigableMap: 
Additional methods for sorted 
sets/maps.



U10M12004-OOP

8.1.5 Interfaces in Collections

Dr. Muhammad Umar Farooq Qaisar 21

• There are two fundamental interfaces for collections: Collection and Map. 
As you already saw, you insert elements into a collection with a method.

• However, maps hold key/value pairs, and you use the put method to insert 
them:

• K key: This is the key in the map. The key is used to uniquely identify the 
corresponding value in the map. Each key in a map must be unique.

• V value: This is the value associated with the given key. The value can be any 
object (or primitive) that you want to store in the map. The value is accessed 
using the key.

• To read elements from a collection, visit them with an iterator. However, 
you can read values from a map with the get method:

boolean add(E element)

V put(K key, V value)

V get(K key)



U10M12004-OOP

8.1.5 Interfaces in Collections

Dr. Muhammad Umar Farooq Qaisar 22

• A List is an ordered collection. Elements are added into a particular 
position in the container. An element can be accessed in two ways: by an 
iterator or by an integer index.

• The latter is called random access because elements can be visited in any 
order. In contrast, when using an iterator, one must visit them sequentially.

• The List interface defines several methods for random access:

• The ListIterator interface is a sub-interface of Iterator. It defines a method 
for adding an element before the iterator position:

void add(int index, E element)
void remove(int index)
E get(int index)
E set(int index, E element)

void add(E element)



U10M12004-OOP

8.1.5 Interfaces in Collections

Dr. Muhammad Umar Farooq Qaisar 23

• In practice, there are two kinds of ordered collections, with very different 
performance tradeoffs. 
• An ordered collection that is backed by an array has fast random access, and it 

makes sense to use the List methods with an integer index.

• In contrast, a linked list, while also ordered, has slow random access, and it is 
best traversed with an iterator. 

• The Set interface is identical to the Collection interface, but the behavior of 
the methods is more tightly defined. 
• The add method of a set should reject duplicates. 

• Explanation: The add() method rejects the duplicate "apple" because sets do not 
allow duplicate elements.

• The equals method of a set should be defined so that two sets are identical if 
they have the same elements, but not necessarily in the same order.

• Explanation: Despite the different order of elements in the two sets, 
set1.equals(set2) returns true because they contain the same elements.

• The hashCode method should be defined so that two sets with the same 
elements yield the same hash code.

• Explanation: Even though the sets may have different internal orderings, the 
hashCode() for set1 and set2 will be the same because they contain the same 
elements.



U10M12004-OOP

8.1.5 Interfaces in Collections

Dr. Muhammad Umar Farooq Qaisar 24

• Why make a separate interface if the method signatures are the same?

• Conceptually, not all collections are sets. Making a Set interface enables 
programmers to write methods that accept only sets.

• The SortedSet and SortedMap interfaces expose the comparator object 
used for sorting, and they define methods to obtain views of subsets of the 
collections.

• SortedSet and SortedMap allow sorting based on a comparator and provide 
views like subSet(), tailSet(), headSet() for SortedSet and subMap(), headMap(), 
tailMap() for SortedMap.

• Comparator: It defines the sorting order, and it can be customized (e.g., 
sorting in descending order).

• Finally, Java 6 introduced interfaces NavigableSet and NavigableMap that 
contain additional methods for searching and traversal in sorted sets and 
maps.

• The TreeSet and TreeMap classes implement these interfaces.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 25

Q. What is the main purpose of the Java Collections Framework?

A. To define custom data structures

B. To provide a set of standard interfaces and classes for handling groups of   objects

C. To define how objects are stored in memory

D. To improve the performance of algorithms

Answer: B. To provide a set of standard interfaces and classes for handling groups of 
objects

Explanation: The Collections Framework provides a well-defined set of classes and 
interfaces to store and manipulate collections of objects, such as lists, sets, and maps.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 26

Q. Which collection interface allows duplicate elements?

A. Set

B. List

C. Map

D. Queue

Answer: B. List

Explanation:
A List allows duplicate elements, while a Set does not. A Map allows duplicate values 
but not duplicate keys.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 27

Q. What is the default order of elements in a HashSet?

A. Sorted by their natural order

B. In the order they were added

C. Undefined

D. In descending order

Answer: C. Undefined

Explanation: The order of elements in a HashSet is undefined because it uses hashing 
for storage, so elements are not stored in any predictable order.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 28

Q. Which of the following collections implements both Set and SortedSet 
interfaces?

A. HashSet

B. TreeSet

C. LinkedHashSet

D. PriorityQueue

Answer: B. TreeSet

Explanation: A TreeSet implements both the Set and SortedSet interfaces, 
maintaining elements in a sorted order.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 29

Q. Which method of the List interface is used to insert an element at a 
specific index?

A. insert()

B. addAt()

C. add(index, element)

D. put(index, element)

Answer: C. add(index, element)

Explanation: The add(index, element) method is used to insert an element at a 
specified index in a List. This shifts elements at and after the index.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 30

Q. Which collection interface allows storing key-value pairs?

A. List

B. Set

C. Map

D. Queue

Answer: C. Map

Explanation: The Map interface stores key-value pairs, where each key is associated 
with a value.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 31

Q. What is the difference between LinkedList and ArrayList?

A. LinkedList stores elements in an array, while ArrayList stores elements in a linked list

B. LinkedList provides constant-time access by index, while ArrayList does not

C. LinkedList is faster for insertions and deletions, while ArrayList is faster for access by index

D. LinkedList is part of the Collections Framework, while ArrayList is not

Answer: C. LinkedList is faster for insertions and deletions, while ArrayList is faster for access by 
index

Explanation: LinkedList is better for frequent insertions and deletions as it uses a doubly linked 
list structure. ArrayList is faster for indexed access because it is backed by an array.



U10M12004-OOP

Code Breaker Puzzle

Dr. Muhammad Umar Farooq Qaisar 32

2) public class CodeBreakerPuzzle {

    public static void main(String[] args) {

        List<Person> people = new ArrayList<>();

        people.add(new Person("Alice", 25));

        people.add(new Person("Bob", 30));

        people.add(new Person("Charlie", 20));

    

 // Sorting

        Collections.sort(people);

        for (Person p : people) {

            System.out.println(p.name + " - " + 
p.age);

        }

    }

}

1) class Person {

    String name;

    int age;

    Person(String name, int age) {

        this.name = name;

        this.age = age;

    }

}

This code will throw an error. What's wrong, 
and how can you fix it?



U10M12004-OOP

Code Breaker Puzzle

Dr. Muhammad Umar Farooq Qaisar 33

Explanation: The Person class does not implement Comparable, which is required for 
sorting. We need to either implement Comparable or provide a Comparator to define 
how Person objects should be compared.

Fix by implementing Comparable:
class Person implements Comparable<Person> {
    String name;
    int age;

    Person(String name, int age) {
        this.name = name;
        this.age = age;
    }

    @Override
    public int compareTo(Person other) {
        return Integer.compare(this.age, other.age);  
// Sort by age
    }
}

Alternatively, you can use a Comparator:
Collections.sort(people, (p1, p2) -> 
Integer.compare(p1.age, p2.age));  // Sort by age



U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 34

• 8.1 Java Collections Framework

• 8.2 Concrete Collections

• 8.3 Maps



U10M12004-OOP

Collection Classes

Dr. Muhammad Umar Farooq Qaisar 35

Classes in the 
collections 
framework



U10M12004-OOP

Concrete Collections

Dr. Muhammad Umar Farooq Qaisar 36

ArrayList An indexed sequence that grows and shrinks dynamically

LinkedList
An ordered sequence that allows efficient insertion and 
removal at any location

ArrayDeque A double-ended queue that is implemented as a circular array

HashSet An unordered collection that rejects duplicates

TreeSet A sorted set

EnumSet A set of enumerated type values

LinkedHashSet
A set that remembers the order in which elements were 
inserted

PriorityQueue
A collection that allows efficient removal of the smallest 
element

HashMap A data structure that stores key/value associations

TreeMap A map in which the keys are sorted

EnumMap A map in which the keys belong to an enumerated type

LinkedHashMap A map that remembers the order in which entries were added

WeakHashMap
A map with values that can be reclaimed by the garbage 
collector if they are not used elsewhere

IdentityHashMap A map with keys that are compared by ==, not equals



U10M12004-OOP

8.2.1 Linked Lists

Dr. Muhammad Umar Farooq Qaisar 37

• Two ordered collection implementations: 
• array lists and linked lists.

• Array lists manage an array that can grow or shrink.

• Inserting and removing in the middle is slow:
• Because all array elements 

beyond the removed one 
must be moved toward the 
beginning of the array.

• The same is true for inserting 
elements in the middle.

Figure 9.6 Removing an element 
from an array



U10M12004-OOP

8.2.1 Linked Lists

Dr. Muhammad Umar Farooq Qaisar 38

• Another well-known data structure, the linked list, solves this problem.

• Where an array stores object references in consecutive memory 
locations, a linked list stores each object in a separate link. 

• Each link also stores a reference to the next link in the sequence. 

• In the Java programming language, all linked lists are actually doubly 
linked; that is, each link also stores a reference to its predecessor

Figure 9.7 A doubly linked list 



U10M12004-OOP

8.2.1 Linked Lists

Dr. Muhammad Umar Farooq Qaisar 39

• Linked list=chain of “links”:

• Easy to remove in the 
middle:
• Removing an element from 

the middle of a linked list is 
an inexpensive operation—
only the links around the 
element to be removed need 
to be updated.

Figure 9.7 A doubly linked list 

Figure 9.8 Removing an element 
from a linked list



U10M12004-OOP

8.2.1 Linked Lists

Dr. Muhammad Umar Farooq Qaisar 40

• Use the class LinkedList to remove and add elements in 
the linked list.

• The LinkedList.add method adds the object to the end of the list.

• Use iterators to add elements in the middle of a list.

• The subinterface ListIterator contains an add method:

var staff = new LinkedList<String>();
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
Iterator<String> iter = staff.iterator();
String first = iter.next();  // visit first element
String second = iter.next(); // visit second element
iter.remove();               // remove last visited element

interface ListIterator<E> extends Iterator<E>{
void add(E element);     //do not return a boolean

}



U10M12004-OOP

8.2.1 Linked Lists

Dr. Muhammad Umar Farooq Qaisar 41

• In addition, the ListIterator interface has two 
methods for traversing a list backwards.

• The listIterator method of the LinkedList class returns an 
iterator object that implements the ListIterator interface.

• The add method adds the new element before the iterator 
position.

E previous()
boolean hasPrevious()

ListIterator<String> iter = staff.listIterator();

var staff = new LinkedList<String>();
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
ListIterator<String> iter = staff.listIterator();
iter.next();          // skip past first element
iter.add("Juliet");



U10M12004-OOP

8.2.1 Linked Lists

Dr. Muhammad Umar Farooq Qaisar 42

•  A set method replaces the last element, returned by a 
call to next or previous, with a new element.

• Linked list iterators detect concurrent modifications:

• The list and all iterators keep a “modification count”.
• OK to have multiple readers and no writer.

• OK to have one writer and no reader.

ListIterator<String> iter = list.listIterator();
String oldValue = iter.next(); // returns first element
iter.set(newValue);            // sets first element to newValue

List<String> list = . . .;
ListIterator<String> iter1 = list.listIterator();
ListIterator<String> iter2 = list.listIterator();
iter1.next();
iter1.remove();
iter2.next();          // throws ConcurrentModificationException



U10M12004-OOP

8.2.1 Linked Lists

Dr. Muhammad Umar Farooq Qaisar 43

• Remember to use a ListIterator to traverse the 
elements of the linked list in either direction and to add 
and remove elements.

• The LinkedList class supplies a get method that lets 
you access a particular element:

• The code is staggeringly inefficient. 

LinkedList<String> list = . . .;
String obj = list.get(n);

for (int i = 0; i < list.size(); i++) {
 do something with list.get(i);}

The only reason to use linkedList is to minimize the 
cost of insertion and removal in the middle of the list. If 
you want random access into a collection, use an array 
or ArrayList, not a linked list.



U10M12004-OOP

8.2.2 Array Lists

Dr. Muhammad Umar Farooq Qaisar 44

• ArrayList is the other concrete implementation of the 
List interface which encapsulates a dynamically 
reallocated array of objects.
• No need to use iterators since you have efficient random access 

with methods get and set. 

• They are lists, so you may want to save references in List 
variables:

• Moment of truth: You won't use linked lists much. Most 
of the time, an array list is fine.

• Some methods give you a List value:

• It's a list, but you don't know which kind.

List<String> names = new ArrayList<>();

List<String> names = Arrays.asList("Peter", "Paul", "Mary");



U10M12004-OOP

8.2.3 Hash Sets

Dr. Muhammad Umar Farooq Qaisar 45

• A well-known data structure for finding objects quickly is 
the hash table.
• A hash table computes an integer, called the hash code, for each 

object. A hash code is somehow derived from the instance fields 
of an object.

• Hash table uses hash codes to group elements into buckets:

Table 9.2 Hash Codes Resulting 
from the hashCode Method

Figure 9.10 A hash table 



U10M12004-OOP

8.2.3 Hash Sets

Dr. Muhammad Umar Farooq Qaisar 46

• Important notes:
• If a.equals(b), then a and b must have the same 

hash code.

• Hit a bucket that is already filled - hash collision.

• Compare the new object with all objects in that bucket 
to see if it is already present. 

• If too many elements are inserted into a hash table, the 
number of collisions increases, and retrieval 
performance suffers.

• Hash tables can be used to implement several important 
data structures: the set type. 
• The hash set iterator visits all buckets in turn. 



U10M12004-OOP

8.2.4 Tree Sets

Dr. Muhammad Umar Farooq Qaisar 47

• Tree sets visit elements in sorted order.
• You insert elements into the collection in any order. 

• When you iterate through the collection, the values are automatically 
presented in sorted order. 

• For example, suppose you insert three strings and then visit all 
elements that you added.

• Then, the values are printed in sorted order: Amy Bob Carl. As the 
name of the class suggests, the sorting is accomplished by a tree data 
structure.

• Every time an element is added to a tree, it is placed into its proper 
sorting position. 

var sorter = new TreeSet<String>(); 
sorter.add("Bob");
sorter.add("Amy");
sorter.add("Carl");
for (String s : sorter) System.out.println(s);



U10M12004-OOP

8.2.4 Tree Sets

Dr. Muhammad Umar Farooq Qaisar 48

• In practice, a bit slower than hash sets.
• Adding an element to a tree is slower than adding it to a hash table—

see Table 9.3 for a comparison. But it is still much faster than checking 
for duplicates in an array or linked list.

• Therefore, performance is guaranteed, whereas hash sets can perform 
poorly when the hash function does not scramble values well.

• Tree set needs total ordering - not always easy to find.
• In a total ordering, two elements compare identically only when they 

are equal.

Use tree sets when your elements are comparable, 
and you need traversal in sorted order.



U10M12004-OOP

8.2.5 Queues and Deques

Dr. Muhammad Umar Farooq Qaisar 49

• A queue can add elements at 
the tail and remove elements 
from the head.

• A double-ended queue, or 
deque, can add or remove 
elements at the head and tail. 
• Deque interface are 

implemented by the 
ArrayDeque and 
LinkedList classes.

• Both of which provide deques 
whose size grows as needed. 



U10M12004-OOP

8.2.6 Priority Queues

Dr. Muhammad Umar Farooq Qaisar 50

• A priority queue retrieves elements in sorted order 
after they were inserted in arbitrary order.
• Makes use of an elegant and efficient data structure heap.

• A heap is a self-organizing binary tree in which the add and 
remove operations cause the smallest element to gravitate 
to the root, without wasting time on sorting all elements.

• It can either hold elements of a class that implements 
the Comparable interface or a Comparator object 
you supply in the constructor.

• A typical use is job scheduling. 
• Each job has a priority. When removing, the “highest 

priority” job is removed.



U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 51

• 8.1 Java Collections Framework

• 8.2 Concrete Collections

• 8.3 Maps



U10M12004-OOP

8.3 Maps

Dr. Muhammad Umar Farooq Qaisar 52

• Now, we know that the set is a collection that lets you quickly find an existing 
element. However, to search for an element, you need to have an exact copy of 
the element to find. 

• That isn’t a very common lookup—usually, you have some key information, and 
you want to look up the associated element. 

• The map data structure serves that purpose. 

• A map stores key/value pairs. You can find a value if you provide the key. 

• For example, you may store a table of letters, where the keys are the ID 
numbers, and the values are letters. 

• Next, we are about to learn how to work with maps.



U10M12004-OOP

8.3.1 Basic Map Operations

Dr. Muhammad Umar Farooq Qaisar 53

• A map stores key/value pairs. 
• HashMap hashes the keys, TreeMap organizes them in sorted 

order.

• Add an association to a map:

• Retrieve a value with a given key:

• The get method returns null if the key is absent. Better 
approach:

var staff = new HashMap<String, Employee>(); 
var harry = new Employee("Harry Hacker");
staff.put("987-98-9996", harry);

var id = "987-98-9996";
Employee e = staff.get(id); // gets harry

Map<String, Integer> scores = . . .;
int score = scores.getOrDefault(id, 0); 
// gets 0 if the id is not present



U10M12004-OOP

8.3.1 Basic Map Operations

Dr. Muhammad Umar Farooq Qaisar 54

• Keys must be unique. 
• The put returns the previous value associated 

with its key parameter.
• The remove method removes an element with a 

given key from the map.
• The size method returns the number of entries in 

the map.
• Easiest way to iterate over a map:

scores.forEach((k, v) ->
 System.out.println("key=" + k + ", value=" + v));



U10M12004-OOP

8.3.2 Updating Map Entries

Dr. Muhammad Umar Farooq Qaisar 55

• Updating a map entry is tricky because the first time is 
special.

• Consider updating a word count:

• What if word wasn't present?

• Another approach is to first call the putIfAbsent method.

• The merge method simplifies this common operation.

• If word wasn’t present, put 1. Otherwise, put the sum of 1 and the 
previous value (combines the previous value and 1, using the 
Integer::sum function).

counts.putIfAbsent(word, 0);
counts.put(word, counts.get(word) + 1); 
 // now we know that get will succeed

counts.merge(word, 1, Integer::sum);

counts.put(word, counts.getOrDefault(word, 0) + 1);

counts.put(word, counts.get(word) + 1);



U10M12004-OOP

8.3.3 Map Views

Dr. Muhammad Umar Farooq Qaisar 56

• In the Java collections framework, a map isn't a 
collection.
• But can obtain views of the map - objects that implement 

the Collection interface or one of its subinterfaces.

• Collections in Java (like List, Set, and Queue) represent 
a group of elements that can be stored and accessed. 
These elements are all typically of the same type.

• A Map, on the other hand, stores key-value pairs. It 
associates a key with a value and does not treat its 
elements as a simple collection of objects. A Map 
contains a set of keys and a set of values, but keys and 
values are treated differently in the map.



U10M12004-OOP

8.3.3 Map Views

Dr. Muhammad Umar Farooq Qaisar 57

• Three views: 
• the set of keys, 

• the collection of values (which is not a set), and 

• the set of key/value pairs.

Set<K> keySet()
Collection<V> values()
Set<Map.Entry<K, V>> entrySet()



U10M12004-OOP

8.3.3 Map Views

Dr. Muhammad Umar Farooq Qaisar 58

• To visit all keys, can use:

• If you want to look at both keys and values, you can avoid value 
lookups by enumerating the entries.

• When iterating over a Map, if you were to iterate over just the keys and 
then use map.get(key) to get the values, this would involve additional 
lookups for each value, which can be inefficient.

• However, by using entrySet(), you can access both the key and the 
value directly without needing to perform a separate lookup for the 
value. This is often more efficient, especially in large maps.

for (Map.Entry<String, Employee> entry : staff.entrySet()) {
 String k = entry.getKey();
 Employee v = entry.getValue();
 // do something with k, v
}

Set<String> keys = map.keySet();
for (String key : keys) {
 // do something with key
}



U10M12004-OOP

8.3.3 Map Views

Dr. Muhammad Umar Farooq Qaisar 59

• You can avoid the cumbersome Map.Entry by using a var 
declaration.

• Or simply use the forEach method:

• Calling remove on the key set removes the key and 
associated value from the map.

map.forEach((k, v) -> {
 // do something with k, v
});

for (var entry : map.entrySet()){
 // do something with entry.getKey(), entry.getValue()
}



U10M12004-OOP

8.3.4 Weak Hash Maps

Dr. Muhammad Umar Farooq Qaisar 60

• The garbage collector traces live objects. 
• As long as the map object is live, all buckets in it are live and won’t 

be reclaimed. 

• Thus, your program should take care to remove unused values 
from long-lived maps.

• Or you can use a WeakHashMap instead which cooperates 
with the garbage collector to remove key/value pairs when 
the only reference to the key is the one from the hash table 
entry.
• The WeakHashMap uses weak references to hold keys.

• A WeakReference object holds a reference to another object - in 
our case, a hash table key.

• The operations of the WeakHashMap periodically check that 
queue for newly arrived weak references.



U10M12004-OOP

8.3.5 Linked Hash Sets and Maps

Dr. Muhammad Umar Farooq Qaisar 61

• The LinkedHashSet and LinkedHashMap classes 
remember in which they were added.

• As entries are inserted into the table, they are joined in a 
doubly linked list.

Figure 9.11 
A linked hash table 



U10M12004-OOP

8.3.5 Linked Hash Sets and Maps

Dr. Muhammad Umar Farooq Qaisar 62

• A linked hash map can alternatively use access order, not 
insertion order, to iterate through the map entries. 

• To construct such a hash map, call

• Access order is useful for implementing a “least recently 
used” discipline for a cache. Automate the process:

• Adding a new entry then causes the eldest entry to be 
removed whenever your method returns true. 

LinkedHashMap<K, V>(initialCapacity, loadFactor, true)

protected boolean removeEldestEntry(Map.Entry<K, V> eldest)   

var cache = new LinkedHashMap<K, V>(128, 0.75F, true) {
 protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
  return size() > 100;
 }
};



U10M12004-OOP

8.3.6 Enumeration Sets and Maps

Dr. Muhammad Umar Farooq Qaisar 63

• The EnumSet is an efficient set implementation with 
elements that belong to an enumerated type. 

• The EnumSet is internally implemented as a sequence of 
bits. 

• The EnumSet class has no public constructors and use a 
static factory method to construct the set:

• An EnumMap is a map with keys that belong to an 
enumerated type. Specify the key type in the constructor:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, 
SATURDAY, SUNDAY}

EnumSet<Weekday> always = EnumSet.allOf(Weekday.class);
EnumSet<Weekday> never = EnumSet.noneOf(Weekday.class);
EnumSet<Weekday> workday = EnumSet.range(Weekday.MONDAY, 

Weekday.FRIDAY);
EnumSet<Weekday> mwf = EnumSet.of(Weekday.MONDAY, 

Weekday.WEDNESDAY, Weekday.FRIDAY);

var personInCharge = new EnumMap<Weekday, Employee>
(Weekday.class);



U10M12004-OOP

8.3.7 Identity Hash Maps

Dr. Muhammad Umar Farooq Qaisar 64

• In IdentityHashMap, the hash values for the keys should 
not be computed by the hashCode method but by the 
System.identityHashCode method. 

• For comparison of objects, the IdentityHashMap uses ==, 
not equals. 
• In other words, different key objects are considered distinct even if 

they have equal contents.

• This class is useful for implementing object traversal 
algorithms, such as object serialization, in which you want to 
keep track of which objects have already been traversed.



U10M12004-OOP

Recap

Dr. Muhammad Umar Farooq Qaisar 65

Main collection 
classes

Duplicate 
elements is 
allowed?

Elements are 
ordered?

Elements are 
sorted?

The collection 
is thread-safe?

ArrayList Yes Yes No No

LinkedList Yes Yes No No

Vector Yes Yes No Yes

HashSet No No No No

LinkedHashSet No Yes No No

TreeSet No Yes Yes No

HashMap No No No No

LinkedHashMap No Yes No No

Hashtable No No No Yes

TreeMap No Yes Yes No

https://www.codejava.net/java-core/collections/java-collections-framework-summary-table



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 66

Q. What does the put() method of HashMap return?

A. The old value associated with the key

B. The new value associated with the key

C. True or false based on insertion success

D. Null if the key does not exist

Answer: A. The old value associated with the key
Explanation: If the key already exists, the put() method returns the previous value associated 
with the key, or null if the key was not previously mapped.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 67

Q. Which of the following classes does NOT implement the List interface?

A. ArrayList

B. LinkedList

C. Vector

D. HashSet

Answer: D. HashSet

Explanation: HashSet is a Set implementation, which does not allow duplicates and does not 
implement the List interface. The others (ArrayList, LinkedList, Vector) are List implementations.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 68

Q. Which of the following is the correct way to iterate over a Map?

A. for (Map.Entry<K, V> entry : map) {}

B. for (Map<K, V> entry : map.entrySet()) {}

C. for (Map.Entry<K, V> entry : map.entrySet()) {}

D. for (Map.Entry<K, V> entry : map.values()) {}

Answer: C. for (Map.Entry<K, V> entry : map.entrySet()) {}

Explanation: To iterate over a Map, you can use map.entrySet(), which returns a set of 
Map.Entry objects (key-value pairs).



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 69

Q. Which method in LinkedHashMap can be overridden to implement cache 
eviction (like LRU)?

A. removeEldestEntry()

B. clear()

C. containsKey()

D. get()

Answer: A. removeEldestEntry()

Explanation: The removeEldestEntry() method can be overridden to implement eviction logic 
when the map exceeds a certain size.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 70

Q. Which collection class should be used when you need a queue that 
processes elements in priority order?

A. LinkedList

B. PriorityQueue

C. ArrayList

D. TreeMap

Answer: B. PriorityQueue

Explanation: PriorityQueue processes elements based on their priority, not the order they were 
inserted, which is useful for scheduling or processing tasks in order of importance.



U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 71

Q. A LinkedHashMap maintains the order of key-value pairs as they are 
inserted.

A. True

B. False

Answer: B. True

Explanation: A LinkedHashMap maintains insertion order of key-value pairs, meaning it 
preserves the order in which elements were added to the map.


	Slide 1: Object Oriented Programming  Chapter 8 Collections 
	Slide 2: Questions
	Slide 3: Contents
	Slide 4: 8.1 The Java Collections Framework
	Slide 5: 8.1.1 Separating Collection Interfaces and Implementation
	Slide 6: 8.1.1 Separating Collection Interfaces and Implementation
	Slide 7: 8.1.1 Separating Collection Interfaces and Implementation
	Slide 8: 8.1.1 Separating Collection Interfaces and Implementation
	Slide 9: 8.1.1 Separating Collection Interfaces and Implementation
	Slide 10: 8.1.2 The Collection Interface
	Slide 11: 8.1.3 Iterators
	Slide 12: 8.1.3 Iterators
	Slide 13: 8.1.3 Iterators
	Slide 14: 8.1.3 Iterators
	Slide 15: 8.1.3 Iterators
	Slide 16: 8.1.4 Generic Utility Methods
	Slide 17: 8.1.4 Generic Utility Methods
	Slide 18: 8.1.4 Generic Utility Methods
	Slide 19: 8.1.5 Interfaces in Collections
	Slide 20: 8.1.5 Interfaces in Collections
	Slide 21: 8.1.5 Interfaces in Collections
	Slide 22: 8.1.5 Interfaces in Collections
	Slide 23: 8.1.5 Interfaces in Collections
	Slide 24: 8.1.5 Interfaces in Collections
	Slide 25: Top Hat Question
	Slide 26: Top Hat Question
	Slide 27: Top Hat Question
	Slide 28: Top Hat Question
	Slide 29: Top Hat Question
	Slide 30: Top Hat Question
	Slide 31: Top Hat Question
	Slide 32: Code Breaker Puzzle
	Slide 33: Code Breaker Puzzle
	Slide 34: Contents
	Slide 35: Collection Classes
	Slide 36: Concrete Collections
	Slide 37: 8.2.1 Linked Lists
	Slide 38: 8.2.1 Linked Lists
	Slide 39: 8.2.1 Linked Lists
	Slide 40: 8.2.1 Linked Lists
	Slide 41: 8.2.1 Linked Lists
	Slide 42: 8.2.1 Linked Lists
	Slide 43: 8.2.1 Linked Lists
	Slide 44: 8.2.2 Array Lists
	Slide 45: 8.2.3 Hash Sets
	Slide 46: 8.2.3 Hash Sets
	Slide 47: 8.2.4 Tree Sets
	Slide 48: 8.2.4 Tree Sets
	Slide 49: 8.2.5 Queues and Deques
	Slide 50: 8.2.6 Priority Queues
	Slide 51: Contents
	Slide 52: 8.3 Maps
	Slide 53: 8.3.1 Basic Map Operations
	Slide 54: 8.3.1 Basic Map Operations
	Slide 55: 8.3.2 Updating Map Entries
	Slide 56: 8.3.3 Map Views
	Slide 57: 8.3.3 Map Views
	Slide 58: 8.3.3 Map Views
	Slide 59: 8.3.3 Map Views
	Slide 60: 8.3.4 Weak Hash Maps
	Slide 61: 8.3.5 Linked Hash Sets and Maps
	Slide 62: 8.3.5 Linked Hash Sets and Maps
	Slide 63: 8.3.6 Enumeration Sets and Maps
	Slide 64: 8.3.7 Identity Hash Maps
	Slide 65: Recap
	Slide 66: Top Hat Question
	Slide 67: Top Hat Question
	Slide 68: Top Hat Question
	Slide 69: Top Hat Question
	Slide 70: Top Hat Question
	Slide 71: Top Hat Question

