
U10M12004-OOP

Object Oriented
Programming

Chapter 9
Input and Output

Slides partially adapted from lecture
notes by Cay Horstmann

Dr. Muhammad Umar Farooq Qaisar

27th April 2025

U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 2

• 9.1 I/O Streams

• 9.2 Reading and Writing Binary Data

• 9.3 Object I/O Streams and Serialization

• 9.4 Working with Files

U10M12004-OOP

Input/Output Streams

Dr. Muhammad Umar Farooq Qaisar 3

• An input stream is a source of bytes.

• An output stream is a destination for bytes.
• These sources and destinations can be files, network connections,

and blocks of memory.

• InputStream and OutputStream are the basis for a
hierarchy of I/O classes.

• Reader and Writer are the basis for a hierarchy of I/O
classes for processing Unicode characters.
• Readers/writers process characters, not bytes.

• No relationship with java.util.stream.

U10M12004-OOP

9.1.1 Reading and Writing Bytes

Dr. Muhammad Umar Farooq Qaisar 4

• The InputStream class has an abstract method:

• The read method returns a single byte (as an int) or -1 at the end
of input.

• It is more common to read bytes in bulk:

• Abstract read method can read a given number of bytes.

• The OutputStream class has an abstract method:

• You can write one byte or bytes from an array:

abstract int read()

byte[] bytes = in.readAllBytes();

abstract void write(int b)

byte[] values = . . .;
out.write(values);

U10M12004-OOP

9.1.1 Reading and Writing Bytes

Dr. Muhammad Umar Farooq Qaisar 5

• The transferTo method transfers all bytes from an input
stream to an output stream:

• The available method lets you check the number of
bytes that are currently available for reading:

• When writing to a stream, close it when you are done:

• You can use one of many input/output classes that build
upon the basic InputStream and OutputStream classes.

in.transferTo(out);

int bytesAvailable = in.available();
if (bytesAvailable > 0) {
 var data = new byte[bytesAvailable];
 in.read(data);
}

out.close();

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Muhammad Umar Farooq Qaisar 6

• Java has a whole zoo of more than 60 different input/output
stream types.

Figure 2.1 Input and output stream hierarchy Figure 2.2 Reader and writer hierarchy

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Muhammad Umar Farooq Qaisar 7

• The InputStream and OutputStream classes let you read
and write individual bytes and arrays of bytes.

Figure 2.1 Input and output stream hierarchy

• To read and write strings and
numbers, you need more capable
subclasses. For example:

• DataInputStream and
DataOutputStream let you
read and write all the primitive
Java types in binary format.

• ZipInputStream and
ZipOutputStream let you read
and write files in the familiar ZIP
compression format.

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Muhammad Umar Farooq Qaisar 8

• For Unicode text, on the other hand, you can use subclasses
of the abstract classes Reader and Writer.

• The basic methods:

• The read method returns either
a UTF-16 code unit (as an integer
between 0 and 65535) or -1
when you have reached the end
of the file.

• The write method is called with
a Unicode code unit.

Figure 2.2 Reader and writer hierarchy

abstract int read()
abstract void write(int c)

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Muhammad Umar Farooq Qaisar 9

• There are four additional interfaces: Closeable, Flushable,
Readable, and Appendable.
• The classes InputStream, OutputStream, Reader, and Writer all

implement the Closeable interface.
• OutputStream and Writer implement the Flushable interface.

• The CharBuffer class has methods for sequential and random
read/write access.
• It represents an in-memory buffer or a memory-mapped file.

• The Appendable interface has two methods for appending single
characters and character sequences.

• The CharSequence interface describes basic properties of a sequence
of char values.
• It is implemented by String, CharBuffer, StringBuilder, and
StringBuffer.

• Of the input/output stream classes, only Writer implements
Appendable.

void close() throws IOException
void flush()
int read(CharBuffer cb)

Appendable append(char c)
Appendable append(CharSequence s)

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Muhammad Umar Farooq Qaisar 10

Figure 2.3 The Closeable, Flushable, Readable, and Appendable interfaces

U10M12004-OOP

9.1.3 Combining Input/Output Stream Filters

Dr. Muhammad Umar Farooq Qaisar 11

• FileInputStream and FileOutputStream give you
input and output streams attached to a disk file.

• Can only read bytes and byte arrays from the object fin.

• DataInputStream can read numeric types. But it has no
method to get data from a file.

• You can combine the two responsibilities(retrieve bytes ;
assemble bytes).

var fin = new FileInputStream("employee.dat");
 // pass the file name or full path name of the file

byte b = (byte) fin.read();

DataInputStream din = . . .;
double x = din.readDouble();

var fin = new FileInputStream("employee.dat");
var din = new DataInputStream(fin);
double x = din.readDouble();

U10M12004-OOP

9.1.3 Combining Input/Output Stream Filters

Dr. Muhammad Umar Farooq Qaisar 12

• You can add multiple capabilities by nesting the filters. If
you want buffering and the data input methods for a file:

• Sometimes you’ll need to keep track of the intermediate
input streams when chaining them together.

• Reading and unreading are the only methods that apply to
a pushback input stream.

var din = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("employee.dat")));

var pbin = new PushbackInputStream(
 new BufferedInputStream(
 new FileInputStream("employee.dat")));

int b = pbin.read();//speculatively read the next byte

if (b != '<') pbin.unread(b);//throw it back

U10M12004-OOP

9.1.3 Combining Input/Output Stream Filters

Dr. Muhammad Umar Farooq Qaisar 13

• The ability to mix and match filter classes to construct
useful sequences of input/output streams is flexible.

var zin = new ZipInputStream(new FileInputStream("employee.zip"));
var din = new DataInputStream(zin);

Figure 2.4
A sequence of
filtered input
streams

U10M12004-OOP

9.1.4 Text Input and Output

Dr. Muhammad Umar Farooq Qaisar 14

• When saving data, you have the choice between binary and
text formats.
• When saving text strings, you need to consider the character

encoding.

• The OutputStreamWriter class turns an output stream
of Unicode code units into a stream of bytes.

• The InputStreamReader class turns an input stream
that contains bytes into Unicode code units.

• Use subclasses for processing strings and numbers.

var in = new InputStreamReader(System.in);

var in = new InputStreamReader(new FileInputStream("data.txt"),
StandardCharsets.UTF_8);

U10M12004-OOP

9.1.5 How to Write Text Output

Dr. Muhammad Umar Farooq Qaisar 15

• PrintWriter class has methods to print strings and
numbers in text format.

• To write to a print writer, use the same print, println,
and printf methods that you used with System.out.

• You can use these methods to print numbers (int, short,
long, float, double), characters, boolean values, strings, and
objects.

var out = new PrintWriter("employee.txt", StandardCharsets.UTF_8);
 //construct a PrintStream from a file name and a character encoding

String name = "Harry Hacker";
double salary = 75000;
out.print(name);
out.print(' ');
out.println(salary);

Harry Hacker 75000.0

U10M12004-OOP

9.1.5 How to Write Text Output

Dr. Muhammad Umar Farooq Qaisar 16

• The println method adds the correct end-of-line character
for the target system ("\r\n" on Windows, "\n" on UNIX) to
the line.

• You can enable or disable autoflushing by using the
PrintWriter(Writer writer, boolean autoFlush) constructor:

• By default, autoflushing is not enabled.

• The print methods don’t throw exceptions.
• You can call the checkError method to see if something went

wrong with the output stream.

var out = new PrintWriter(
 new OutputStreamWriter(
 new FileOutputStream(“employee.txt”),

StandardCharsets.UTF_8), true); // autoflush

U10M12004-OOP

9.1.6 How to Read Text Input

Dr. Muhammad Umar Farooq Qaisar 17

• The easiest way to process arbitrary text is the Scanner class.
You can construct a Scanner from any input stream.

• Can read a short text file into a string like this:

• If you want the file as a sequence of lines, call:

• If the file is large, process the lines lazily as a Stream<String>:

• Use a scanner to read tokens(strings separated by a delimiter).
The default delimiter is white space.
• You can change the delimiter to any regular expression.

var content = Files.readString(path, charset);

List<String> lines = Files.readAllLines(path, charset);

try (Stream<String> lines = Files.lines(path, charset)){
 . . .
}

Scanner in = . . .;
in.useDelimiter("\\PL+");

U10M12004-OOP

9.1.6 How to Read Text Input

Dr. Muhammad Umar Farooq Qaisar 18

• Calling the next method yields the next token:

• Alternatively, you can obtain a stream of all tokens as:

• The BufferedReader class has a lines method that yields
a Stream<String>.

• Unlike a Scanner, a BufferedReader has no methods for
reading numbers.

while (in.hasNext()){
 String word = in.next();
 . . .
}

Stream<String> words = in.tokens();

U10M12004-OOP

9.1.7 Saving Objects in Text Format

Dr. Muhammad Umar Farooq Qaisar 19

• An example program that stores an array of Employee
records in a text file. We use a vertical bar (|) as our
delimiter.

• Here is a sample set of records:

• Write all fields, followed by either a | or, for the last field,
a newline character.

Harry Hacker|35500|1989-10-01
Carl Cracker|75000|1987-12-15
Tony Tester|38000|1990-03-15

public static void writeEmployee(PrintWriter out, Employee e){
 out.println(e.getName() + "|" + e.getSalary() + "|" +
 e.getHireDay());
}

U10M12004-OOP

9.1.7 Saving Objects in Text Format

Dr. Muhammad Umar Farooq Qaisar 20

• Use a scanner to read each line and then split the line into
tokens with the String.split method.

• The parameter of the split method is a regular expression
describing the separator.

public static Employee readEmployee(Scanner in){
 String line = in.nextLine();
 String[] tokens = line.split("\\|");
 String name = tokens[0];
 double salary = Double.parseDouble(tokens[1]);
 LocalDate hireDate = LocalDate.parse(tokens[2]);
 int year = hireDate.getYear();
 int month = hireDate.getMonthValue();
 int day = hireDate.getDayOfMonth();
 return new Employee(name, salary, year, month, day);
}

U10M12004-OOP

9.1.7 Saving Objects in Text Format

Dr. Muhammad Umar Farooq Qaisar 21

• The static method first writes the length of the array,
then writes each record.

• The static method first reads in the length of the array,
then reads in each record.

• This turns out to be a bit tricky:

void writeData(Employee[] e, PrintWriter out)

Employee[] readData(Scanner in)

int n = in.nextInt();
in.nextLine(); // consume newline
var employees = new Employee[n];
for (int i = 0; i < n; i++) {
 employees[i] = new Employee();
 employees[i].readData(in);
}

U10M12004-OOP

9.1.8 Character Encodings

Dr. Muhammad Umar Farooq Qaisar 22

• Java uses the Unicode standard for characters.

• The most common encoding is UTF-8, which encodes each
Unicode code point into a sequence of one to four bytes.

• Another common encoding is UTF-16.

U10M12004-OOP

9.1.8 Character Encodings

Dr. Muhammad Umar Farooq Qaisar 23

• In addition to the UTF encodings, there are partial
encodings that cover a character range suitable for a given
user population (ISO 8859-1; Shift-JIS).

• There is no reliable way to automatically detect the
character encoding from a stream of bytes. You should
always explicitly specify the encoding.

• The StandardCharsets class has static variables of type
Charset for the character encodings.

• To obtain the Charset for another encoding, use the static
forName method:

• Use the Charset object when reading or writing text.

Charset shiftJIS = Charset.forName("Shift-JIS");

var str = new String(bytes, StandardCharsets.UTF_8);

U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 24

• 9.1 I/O Streams

• 9.2 Reading and Writing Binary Data

• 9.3 Object I/O Streams and Serialization

• 9.4 Working with Files

U10M12004-OOP

9.2.1 The DataInput and DataOutput interfaces

Dr. Muhammad Umar Farooq Qaisar 25

• The DataOutput interface defines the following methods
for writing a number, a character, a boolean value, or a
string in binary format:

• The writeUTF method writes string data using a modified
version of the 8-bit Unicode Transformation Format.

• To read the data back in, use the following methods
defined in the DataInput interface:

writeChars writeFloat
writeByte writeDouble
writeInt writeChar
writeShort writeBoolean
writeLong writeUTF

readInt readDouble readShort readChar
readLong readBoolean readFloat readUTF

U10M12004-OOP

9.2.1 The DataInput and DataOutput interfaces

Dr. Muhammad Umar Farooq Qaisar 26

• The DataInputStream class implements the DataInput
interface.

• To read binary data from a file, combine a
DataInputStream with a source of bytes such as a
FileInputStream:

• To write binary data, use the DataOutputStream class
that implements the DataOutput interface:

var in = new DataInputStream(new FileInputStream("employee.dat"));

var out = new DataOutputStream(new FileOutputStream("employee.dat"));

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Muhammad Umar Farooq Qaisar 27

• The RandomAccessFile class lets you read or write data
anywhere in a file.

• Specify the option by using the string "r" (for read access)
or "rw" (for read/write access).

• A random-access file has a file pointer that indicates the
position of the next byte to be read or written.
• The seek method can be used to set the file pointer to an

arbitrary byte position within the file.

• The getFilePointer method returns the current position of the
file pointer.

• The RandomAccessFile class implements both the DataInput
and DataOutput interfaces.

var in = new RandomAccessFile("employee.dat", "r");
var inOut = new RandomAccessFile("employee.dat", "rw");

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Muhammad Umar Farooq Qaisar 28

• An example program:

• If you want to modify the record and save it back into the
same location, set the file pointer back to the beginning of
the record:

• Use the length method to determine the total number of
bytes in a file:

long n = 3;
in.seek((n - 1) * RECORD_SIZE);
var e = new Employee();
e.readData(in);

in.seek((n - 1) * RECORD_SIZE);
e.writeData(out);

long nbytes = in.length(); // length in bytes
int nrecords = (int) (nbytes / RECORD_SIZE);

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Muhammad Umar Farooq Qaisar 29

• There are two helper methods to write and read strings of
a fixed size.

• The writeFixedString writes the specified number of
code units, starting at the beginning of the string.

• If there are too few code units, the method pads the string,
using zero values.

public static void writeFixedString(String s, int size,
DataOutput out) throws IOException {
 for (int i = 0; i < size; i++) {
 char ch = 0;
 if (i < s.length()) ch = s.charAt(i);
 out.writeChar(ch);
 }
}

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Muhammad Umar Farooq Qaisar 30

• The readFixedString method uses the StringBuilder
class to read in a string.

• Place the writeFixedString and readFixedString
methods inside the DataIO helper class.

public static String readFixedString(int size, DataInput in)
throws IOException {
 var b = new StringBuilder(size);
 int i = 0;
 var done = false;
 while (!done && i < size) {
 char ch = in.readChar();
 i++;
 if (ch == 0) done = true;
 else b.append(ch);
 }
 in.skipBytes(2 * (size - i));
 return b.toString();
}

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Muhammad Umar Farooq Qaisar 31

• To write a fixed-size record, simply write all fields in binary.

• Reading the data back is just as simple.

DataIO.writeFixedString(e.getName(), Employee.NAME_SIZE, out);
out.writeDouble(e.getSalary());
LocalDate hireDay = e.getHireDay();
out.writeInt(hireDay.getYear());
out.writeInt(hireDay.getMonthValue());
out.writeInt(hireDay.getDayOfMonth());

String name = DataIO.readFixedString(Employee.NAME_SIZE, in);
double salary = in.readDouble();
int y = in.readInt();
int m = in.readInt();
int d = in.readInt();

U10M12004-OOP

9.2.3 ZIP Archives

Dr. Muhammad Umar Farooq Qaisar 32

• ZIP archives store one or more files in compressed format.
• Each ZIParchive has a header with information .

• Use a ZipInputStream to read a ZIP archive.

• The getNextEntry method returns an object of type ZipEntry
that describes the entry.

• Do not close zin until you read the last entry.

• A typical code sequence to read through a ZIP file:

var zin = new ZipInputStream(new FileInputStream(zipname));
ZipEntry entry;
while ((entry = zin.getNextEntry()) != null) {
 // read the contents of zin
 zin.closeEntry();
}
zin.close();

U10M12004-OOP

9.2.3 ZIP Archives

Dr. Muhammad Umar Farooq Qaisar 33

• Use a ZipOutputStream to write a ZIP file.

• ZIP input streams are a good example of the power of the
stream abstraction.
• When you read data stored in compressed form, you don’t need to

worry that the data are being decompressed as they are being
requested.

• The source of the bytes in a ZIP stream need not be a file - the ZIP
data can come from a network connection.

var fout = new FileOutputStream("test.zip");
var zout = new ZipOutputStream(fout);
for all files {
 var ze = new ZipEntry(filename);
 zout.putNextEntry(ze);
 // send data to zout
 zout.closeEntry();
}
zout.close();

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 34

Q. What is the purpose of the DataInputStream class in Java?

A) To write binary data to a file

B) To read binary data from a file

C) To read text data from a file

D) To write text data to a file

Answer: B) To read binary data from a file

Explanation: DataInputStream is used to read primitive data types (such as int, char,
double, etc.) in a portable way from an input stream. It reads data in binary form.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 35

Q. What does the skipBytes() method do in a DataInputStream?

A) Skips a specified number of bytes in the input stream.

B) Skips a specified number of characters in the input stream.

C) Skips a specified number of lines in the input stream.

D) Skips a specified number of words in the input stream.

Answer: A) Skips a specified number of bytes in the input stream.

Explanation: The skipBytes() method skips the specified number of bytes from the
current position in the stream.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 36

Q. Which of the following classes would be used to read a
String from a binary file?

A) BufferedReader

B) DataInputStream

C) ObjectInputStream

D) PrintWriter

Answer: B) DataInputStream

Explanation: DataInputStream is used to read primitive data types, including String (if
written with writeUTF() or writeChars()), from a binary file.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 37

Q. What is the main difference between FileInputStream and
FileReader?

A) FileReader is used for reading character data, while FileInputStream is
used for reading binary data.

B) FileInputStream reads from files on disk, while FileReader reads from
network streams.

C) FileReader reads byte data, while FileInputStream reads character data.

D) There is no difference between the two.

Answer: A) FileReader is used for reading character data, while FileInputStream is
used for reading binary data.

Explanation: FileReader is designed for character data (text files), while
FileInputStream is designed for byte data (binary files).

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 38

Q. Which class would you use to write binary data (like an
image) to a file in Java?

A) BufferedWriter

B) FileOutputStream

C) PrintWriter

D) DataOutputStream

Answer: B) FileOutputStream

Explanation: FileOutputStream is used to write binary data (like images) to a file.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 39

Q. Which of the following is true about the
BufferedOutputStream class?

A) It buffers data for reading.

B) It buffers data for writing.

C) It reads and writes binary data in UTF-8 format.

D) It automatically compresses data.

Answer: B) It buffers data for writing.

Explanation: BufferedOutputStream writes data in large chunks to improve I/O
performance, reducing the number of actual write operations.

U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 40

• 9.1 I/O Streams

• 9.2 Reading and Writing Binary Data

• 9.3 Object I/O Streams and Serialization

• 9.4 Working with Files

U10M12004-OOP

9.3 Object I/O Streams and Serialization

Dr. Muhammad Umar Farooq Qaisar 41

• Using a fixed-length record format is a good choice if you
need to store data of the same type. But consider that you
have an array of Employee records. It can contain
instances of a subclass like Manager.

• To deal with this situation. Java supports a very general
mechanism, called object serialization, that makes it
possible to write any object to an output stream and read
it again later.

U10M12004-OOP

9.3.1 Saving and Loading Serializable Objects

Dr. Muhammad Umar Farooq Qaisar 42

• Use the writeObject method of the ObjectOutputStream
class to save an object.

• To read the objects back in, first get an ObjectInputStream
object:

• Then, use the readObject method to retrieve the objects in the same
order in which they were written:

var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);
var boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
out.writeObject(harry);
out.writeObject(boss);

var in = new ObjectInputStream(new FileInputStream("employee.dat"));

var e1 = (Employee) in.readObject();
var e2 = (Employee) in.readObject();

U10M12004-OOP

9.3.1 Saving and Loading Serializable Objects

Dr. Muhammad Umar Farooq Qaisar 43

• The class must implement the Serializable interface
that save to an output stream and restore from an object
input stream:

• The Serializable interface has no methods.

• An ObjectOutputStream looks at all the fields of the
objects and saves their contents.

• What happens when one object is shared by several
objects as part of their state?

class Employee implements Serializable { . . . }

class Manager extends Employee {
 private Employee secretary;
 . . .
} // Assume that each manager has a secretary

U10M12004-OOP

9.3.1 Saving and Loading Serializable Objects

Dr. Muhammad Umar Farooq Qaisar 44

var harry = new Employee("Harry Hacker", . . .);
var carl = new Manager("Carl Cracker", . . .);
carl.setSecretary(harry);
var tony = new Manager("Tony Tester", . . .);
tony.setSecretary(harry);

Figure 2.5
Two managers can share
a mutual employee.

U10M12004-OOP

9.3.1 Saving and Loading Serializable Objects

Dr. Muhammad Umar Farooq Qaisar 45

• Each object is saved with the serial number - hence the
name object serialization for this mechanism.

Figure 2.6
An example of object serialization

U10M12004-OOP

9.3.2 Understanding the Object Serialization File Format

Dr. Muhammad Umar Farooq Qaisar 46

• Object serialization saves object data in a particular file
format.

• What you should remember is this:
• The serialized format contains the types and data fields of all

objects.

• Each object is assigned a serial number.

• Repeated occurrences of the same object are stored as
references to that serial number.

U10M12004-OOP

Contents

Dr. Muhammad Umar Farooq Qaisar 47

• 9.1 I/O Streams

• 9.2 Reading and Writing Binary Data

• 9.3 Object I/O Streams and Serialization

• 9.4 Working with Files

U10M12004-OOP

9.4. Working with Files

Dr. Muhammad Umar Farooq Qaisar 48

• You have learned how to read and write data from a file.

• However, there is more to file management than reading
and writing.

• The Path interface and Files class encapsulate the
functionality required to work with the file system on the
user’s machine.
• For example, the Files class can be used to remove or rename a

file, or to find out when a file was last modified.

• In other words, the input/output stream classes are concerned
with the contents of files, whereas the classes that we discuss
here are concerned with the storage of files on a disk.

• The Path interface and Files class were added in Java 7. They
are much more convenient to use than the File class, which
dates back all the way to JDK 1.0.

U10M12004-OOP

9.4.1 Paths

Dr. Muhammad Umar Farooq Qaisar 49

• Path objects specify abstract path names (which may not
currently exist on disk).
• A Path is a sequence of directory names, optionally followed by

a file name.

• First component may be a root component such as / or C:\

• Path starting with a root is absolute. Other paths are relative.

• The static Paths.get method receives strings, which it
joins with the path separator of the default file system.

• Path separator is supplied for the default file system.
• / for a UNIX-like system

• \ for Windows

Path absolute = Paths.get("/home", "harry");
Path relative = Paths.get("myprog", "conf", "user.properties");

U10M12004-OOP

9.4.1 Paths

Dr. Muhammad Umar Farooq Qaisar 50

• The get method can get a single string containing multiple
components.

• The call p.resolve(q) returns a path according to rules:

• If q is absolute, that's just q.

• Otherwise, first follow p, then follow q:

• A shortcut for the resolve method takes a string instead
of a path:

String baseDir = props.getProperty("base.dir");
// May be a string such as /opt/myprog or c:\Program Files\myprog
Path basePath = Paths.get(baseDir); // OK that baseDir has separators

Path workRelative = Paths.get("work");
Path workPath = basePath.resolve(workRelative);

Path workPath = basePath.resolve("work");

U10M12004-OOP

9.4.1 Paths

Dr. Muhammad Umar Farooq Qaisar 51

• resolveSibling resolves against a path’s parent,
yielding a sibling path.

• The opposite of resolve is relativize, yielding “how to
get from p to q”.
• E.g., relativizing /home/harry against /home/fred/input.txt

yields ../fred/input.txt

• The normalize method removes . and .. or other
redundancies.
• Normalizing the path /home/harry/../fred/./input.txt yields

/home/fred/input.txt

• The toAbsolutePath method makes a path absolute.
• Such as /home/fred/input.txt or c:\Users\fred\input.txt

Path tempPath = workPath.resolveSibling("temp");
 //if workPath is /opt/myapp/work, create /opt/myapp/temp

U10M12004-OOP

9.4.1 Paths

Dr. Muhammad Umar Farooq Qaisar 52

• The Path interface has many useful methods for taking
paths apart.

• You can construct a Scanner from a Path object:

Path p = Paths.get("/home", "fred", "myprog.properties");
Path parent = p.getParent(); // the path /home/fred
Path file = p.getFileName(); // the path myprog.properties
Path root = p.getRoot(); // the path /

var in = new Scanner(Paths.get("/home/fred/input.txt"));

U10M12004-OOP

9.4.2 Reading and Writing Files

Dr. Muhammad Umar Farooq Qaisar 53

• The Files class makes quick work of common file operations.

• You can read the content of a text file as:

• If you want the file as a sequence of lines, call:

• if you want to write a string, call:

• To append to a given file, use:

• You can also write a collection of lines with:

byte[] bytes = Files.readAllBytes(path);

var content = Files.readString(path, charset);

List<String> lines = Files.readAllLines(path, charset);

Files.write(path, content.getBytes(charset));

Files.write(path, content.getBytes(charset), StandardOpenOption.APPEND);

Files.write(path, lines, charset);

U10M12004-OOP

9.4.2 Reading and Writing Files

Dr. Muhammad Umar Farooq Qaisar 54

• If your files are large or binary, you can still use the familiar
input/output streams or readers/writers:

InputStream in = Files.newInputStream(path);
OutputStream out = Files.newOutputStream(path);
Reader in = Files.newBufferedReader(path, charset);
Writer out = Files.newBufferedWriter(path, charset);

U10M12004-OOP

9.4.3 Creating Files and Directories

Dr. Muhammad Umar Farooq Qaisar 55

• To create a new directory, call:

• To create intermediate directories as well, use:

• You can create an empty file with:

• There are convenience methods for creating a temporary
file or directory in a given or system-specific location.

Files.createDirectory(path); // the path must already exist

Files.createDirectories(path);

Files.createFile(path); //throws an exception if the file exists

Path newPath = Files.createTempFile(dir, prefix, suffix);
Path newPath = Files.createTempFile(prefix, suffix);
Path newPath = Files.createTempDirectory(dir, prefix);
Path newPath = Files.createTempDirectory(prefix);

U10M12004-OOP

9.4.4 Copying, Moving, and Deleting Files

Dr. Muhammad Umar Farooq Qaisar 56

• To copy a file from one location to another, simply call:

• To move the file (that is, copy and delete the original), call:

• The copy or move will fail if the target exists.
• If overwrite an existing target, use the REPLACE_EXISTING option.

• If copy all file attributes, use the COPY_ATTRIBUTES option.

• Use the ATOMIC_MOVE option to specify that a move should
be atomic:

Files.move(fromPath, toPath, StandardCopyOption.ATOMIC_MOVE);

Files.copy(fromPath, toPath, StandardCopyOption.REPLACE_EXISTING,
 StandardCopyOption.COPY_ATTRIBUTES);

Files.move(fromPath, toPath);

Files.copy(fromPath, toPath);

U10M12004-OOP

9.4.4 Copying, Moving, and Deleting Files

Dr. Muhammad Umar Farooq Qaisar 57

• Copy an input stream to a Path:

• Copy a Path to an output stream:

• To delete a file, call:

• This method throws an exception if the file doesn’t exist.

• The deletion methods can also be used to remove an empty
directory.

boolean deleted = Files.deleteIfExists(path);

Files.delete(path);

Files.copy(fromPath, outputStream);

Files.copy(inputStream, toPath);

U10M12004-OOP

9.4.5 Getting File Information

Dr. Muhammad Umar Farooq Qaisar 58

• The following static methods return a boolean value to
check a property of a path:
• exists

• isHidden

• isReadable, isWritable, isExecutable

• isRegularFile, isDirectory, isSymbolicLink

• The size method returns the number of bytes in a file.

• The getOwner method returns the owner of the file, as an
instance of java.nio.file.attribute.UserPrincipal.

long fileSize = Files.size(path);

U10M12004-OOP

9.4.5 Getting File Information

Dr. Muhammad Umar Farooq Qaisar 59

• The basic file attributes are:
• The times at which the file was created, last accessed, and last

modified, as instances of the class java.nio.file.attribute.FileTime.

• Whether the file is a regular file, a directory, a symbolic link, or
none of these.

• The file size.

• The file key—an object of some class, specific to the file system,
that may or may not uniquely identify a file.

• To get these attributes, call:

• You can instead get an instance of PosixFileAttributes:

BasicFileAttributes attributes = Files.readAttributes(path,
BasicFileAttributes.class);

PosixFileAttributes attributes = Files.readAttributes(path,
PosixFileAttributes.class);

U10M12004-OOP

9.4.6 Visiting Directory Entries

Dr. Muhammad Umar Farooq Qaisar 60

• The static Files.list method returns a Stream<Path>
that reads the entries of a directory.

• Since reading a directory involves a system resource that
needs to be closed, you should use a try block:

• Use the Files.walk method to process all descendants
of a directory.

try (Stream<Path> entries = Files.list(pathToDirectory)) {
 . . .
}

try (Stream<Path> entries = Files.walk(pathToRoot)) {
 // Contains all descendants, visited in depth-first order
}

U10M12004-OOP

9.4.6 Visiting Directory Entries

Dr. Muhammad Umar Farooq Qaisar 61

• A sample traversal of the unzipped src.zip tree.

• Whenever the traversal yields a directory, it is entered
before continuing with its siblings.

java
java/nio
java/nio/DirectCharBufferU.java
java/nio/ByteBufferAsShortBufferRL.java
java/nio/MappedByteBuffer.java
. . .
java/nio/ByteBufferAsDoubleBufferB.java
java/nio/charset
java/nio/charset/CoderMalfunctionError.java
java/nio/charset/CharsetDecoder.java
java/nio/charset/UnsupportedCharsetException.java
java/nio/charset/spi
java/nio/charset/spi/CharsetProvider.java
. . .

U10M12004-OOP

9.4.6 Visiting Directory Entries

Dr. Muhammad Umar Farooq Qaisar 62

• You can limit the depth of the tree that you want to visit by
calling Files.walk(pathToRoot, depth).

• Uses the Files.walk method to copy one directory to another:

• Cannot easily use the Files.walk method to delete a tree of
directories.
• As you need to delete the children before deleting the parent.

Files.walk(source).forEach(p -> {
 try {
 Path q = target.resolve(source.relativize(p));
 if (Files.isDirectory(p))
 Files.createDirectory(q);
 else
 Files.copy(p, q);
 } catch (IOException ex) {
 throw new UncheckedIOException(ex);
 }
});

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Muhammad Umar Farooq Qaisar 63

• If you need more fine-grained control over the traversal
process, use the Files.newDirectoryStream object.

• The try-with-resources block ensures that the directory
stream is properly closed.

• There is no specific order in which the directory entries are
visited.

• You can filter the files with a glob pattern:

try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir)) {
 for (Path entry : entries)
 Process entries
}

try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir, "*.java"))

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Muhammad Umar Farooq Qaisar 64

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Muhammad Umar Farooq Qaisar 65

• If you want to visit all descendants of a directory, call the
walkFileTree method instead and supply an object of
type FileVisitor. That object gets notified:
• When a file is encountered: FileVisitResult visitFile(T
path, BasicFileAttributes attrs)

• Before a directory is processed: FileVisitResult
preVisitDirectory(T dir, IOException ex)

• After a directory is processed: FileVisitResult
postVisitDirectory(T dir, IOException ex)

• When an error occurred trying to visit a file or directory, such as
trying to open a directory without the necessary permissions:
FileVisitResult visitFileFailed(T path,
IOException ex)

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Muhammad Umar Farooq Qaisar 66

• In each case, you can specify whether you want to:
• Continue visiting the next file: FileVisitResult.CONTINUE

• Continue the walk, but without visiting the entries in this
directory: FileVisitResult.SKIP_SUBTREE

• Continue the walk, but without visiting the siblings of this file:
FileVisitResult.SKIP_SIBLINGS

• Terminate the walk: FileVisitResult.TERMINATE

• If any of the methods throws an exception, the walk is also
terminated, and that exception is thrown from the
walkFileTree method.

• A convenience class SimpleFileVisitor implements
the FileVisitor interface.

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Muhammad Umar Farooq Qaisar 67

• Example: print out all subdirectories of a given directory:

• Override postVisitDirectory and visitFileFailed.

• The attributes of the path are passed as a parameter to the
preVisitDirectory and visitFile methods.

Files.walkFileTree(Paths.get("/"), new SimpleFileVisitor<Path>() {
 public FileVisitResult preVisitDirectory(Path path,
 BasicFileAttributes attrs) throws IOException{
 System.out.println(path);
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult postVisitDirectory(Path dir, IOException exc){
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult visitFileFailed(Path path, IOException exc)
 throws IOException{
 return FileVisitResult.SKIP_SUBTREE;
 }
});

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Muhammad Umar Farooq Qaisar 68

• The FileVisitor interface are useful if you need to do
some work when entering or leaving a directory.

// Delete the directory tree starting at root
Files.walkFileTree(root, new SimpleFileVisitor<Path>() {
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 throws IOException {
 Files.delete(file);
 return FileVisitResult.CONTINUE;
 }
 public FileVisitResult postVisitDirectory(Path dir, IOException e)
 throws IOException {
 if (e != null) throw e;
 Files.delete(dir);
 return FileVisitResult.CONTINUE;
 }
});

U10M12004-OOP

9.4.8 ZIP File Systems

Dr. Muhammad Umar Farooq Qaisar 69

• The Paths class looks up paths in the default file system -
the files on the user’s local disk.

• If zipname is the name of a ZIP file, then the call:

• Copy a file out of that archive if you know its name:

• To list all files in a ZIP archive, walk the file tree:

FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);

FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);
Files.walkFileTree(fs.getPath("/"), new SimpleFileVisitor<Path>(){
 public FileVisitResult visitFile(Path file, BasicFileAttributes

 attrs) throws IOException{
 System.out.println(file);
 return FileVisitResult.CONTINUE;
 }
});

Files.copy(fs.getPath(sourceName), targetPath);

U10M12004-OOP

Recap

Dr. Muhammad Umar Farooq Qaisar 70

• 9.1 I/O Streams

• 9.2 Reading and Writing Binary Data

• 9.3 Object I/O Streams and Serialization

• 9.4 Working with Files

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 71

Q. What is Serialization in Java?

a) The process of converting an object to a byte stream

b) The process of reading objects from a file

c) The process of writing an object to memory

d) The process of converting a byte stream to an object

Answer: a) The process of converting an object to a byte stream

Explanation: Serialization is the process of converting an object into a byte stream so
that it can be stored in a file or transmitted over a network.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 72

Q. What must a class do in order to be serializable in Java?

a) Implement the Serializable interface

b) Implement the Cloneable interface

c) Extend the Serializable class

d) Implement a custom serialization method

Answer: a) Implement the Serializable interface

Explanation: To make a class serializable in Java, it must implement the Serializable
interface.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 73

Q. Which method is used to delete a file in Java?

a) Files.remove(path)

b) Files.delete(path)

c) Files.deleteFile(path)

d) File.delete()

Answer: b) Files.delete(path)

Explanation: The Files.delete(path) method deletes the file or directory at the given
path.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 74

Q. What is the difference between ObjectOutputStream and
ObjectInputStream?

a) ObjectOutputStream is used to read objects, and ObjectInputStream is used to
write objects

b) ObjectOutputStream is used to write objects, and ObjectInputStream is used to
read objects

c) ObjectOutputStream is used for binary data, and ObjectInputStream is for text data

d) There is no difference; both serve the same function

Answer: b) ObjectOutputStream is used to write objects, and ObjectInputStream is
used to read objects

Explanation: ObjectOutputStream serializes and writes objects to an output stream,
while ObjectInputStream deserializes and reads objects from an input stream.

U10M12004-OOP

Top Hat Question

Dr. Muhammad Umar Farooq Qaisar 75

Q. How does Files.newDirectoryStream() help in working with
files?

a) It allows reading large files in chunks

b) It opens a stream to read all file lines at once

c) It enables filtering files in a directory using patterns

d) It allows writing files to the directory

Answer: c) It enables filtering files in a directory using patterns

Explanation: Files.newDirectoryStream() allows you to filter files in a directory using a
glob pattern, making it easy to work with specific files.

	Slide 1: Object Oriented Programming Chapter 9 Input and Output
	Slide 2: Contents
	Slide 3: Input/Output Streams
	Slide 4: 9.1.1 Reading and Writing Bytes
	Slide 5: 9.1.1 Reading and Writing Bytes
	Slide 6: 9.1.2 The Complete Stream Zoo
	Slide 7: 9.1.2 The Complete Stream Zoo
	Slide 8: 9.1.2 The Complete Stream Zoo
	Slide 9: 9.1.2 The Complete Stream Zoo
	Slide 10: 9.1.2 The Complete Stream Zoo
	Slide 11: 9.1.3 Combining Input/Output Stream Filters
	Slide 12: 9.1.3 Combining Input/Output Stream Filters
	Slide 13: 9.1.3 Combining Input/Output Stream Filters
	Slide 14: 9.1.4 Text Input and Output
	Slide 15: 9.1.5 How to Write Text Output
	Slide 16: 9.1.5 How to Write Text Output
	Slide 17: 9.1.6 How to Read Text Input
	Slide 18: 9.1.6 How to Read Text Input
	Slide 19: 9.1.7 Saving Objects in Text Format
	Slide 20: 9.1.7 Saving Objects in Text Format
	Slide 21: 9.1.7 Saving Objects in Text Format
	Slide 22: 9.1.8 Character Encodings
	Slide 23: 9.1.8 Character Encodings
	Slide 24: Contents
	Slide 25: 9.2.1 The DataInput and DataOutput interfaces
	Slide 26: 9.2.1 The DataInput and DataOutput interfaces
	Slide 27: 9.2.2 Random-Access Files
	Slide 28: 9.2.2 Random-Access Files
	Slide 29: 9.2.2 Random-Access Files
	Slide 30: 9.2.2 Random-Access Files
	Slide 31: 9.2.2 Random-Access Files
	Slide 32: 9.2.3 ZIP Archives
	Slide 33: 9.2.3 ZIP Archives
	Slide 34: Top Hat Question
	Slide 35: Top Hat Question
	Slide 36: Top Hat Question
	Slide 37: Top Hat Question
	Slide 38: Top Hat Question
	Slide 39: Top Hat Question
	Slide 40: Contents
	Slide 41: 9.3 Object I/O Streams and Serialization
	Slide 42: 9.3.1 Saving and Loading Serializable Objects
	Slide 43: 9.3.1 Saving and Loading Serializable Objects
	Slide 44: 9.3.1 Saving and Loading Serializable Objects
	Slide 45: 9.3.1 Saving and Loading Serializable Objects
	Slide 46: 9.3.2 Understanding the Object Serialization File Format
	Slide 47: Contents
	Slide 48: 9.4. Working with Files
	Slide 49: 9.4.1 Paths
	Slide 50: 9.4.1 Paths
	Slide 51: 9.4.1 Paths
	Slide 52: 9.4.1 Paths
	Slide 53: 9.4.2 Reading and Writing Files
	Slide 54: 9.4.2 Reading and Writing Files
	Slide 55: 9.4.3 Creating Files and Directories
	Slide 56: 9.4.4 Copying, Moving, and Deleting Files
	Slide 57: 9.4.4 Copying, Moving, and Deleting Files
	Slide 58: 9.4.5 Getting File Information
	Slide 59: 9.4.5 Getting File Information
	Slide 60: 9.4.6 Visiting Directory Entries
	Slide 61: 9.4.6 Visiting Directory Entries
	Slide 62: 9.4.6 Visiting Directory Entries
	Slide 63: 9.4.7 Using Directory Streams
	Slide 64: 9.4.7 Using Directory Streams
	Slide 65: 9.4.7 Using Directory Streams
	Slide 66: 9.4.7 Using Directory Streams
	Slide 67: 9.4.7 Using Directory Streams
	Slide 68: 9.4.7 Using Directory Streams
	Slide 69: 9.4.8 ZIP File Systems
	Slide 70: Recap
	Slide 71: Top Hat Question
	Slide 72: Top Hat Question
	Slide 73: Top Hat Question
	Slide 74: Top Hat Question
	Slide 75: Top Hat Question

