
(** Changed from https://sagarruchandani.wordpress.com/2015/08/01/hadoop-setting-up-hadoop-2-6-0-
single-node-on-aws-ec2-ubuntu-ami/)

This kind of highlighted commands (or strings) in the following note would be changed in your case.

PART 1: Creating an EC2 Instance on AWS

(Some of the following steps may not be essential, but I did not check all possible cases!)

1. From services, select “EC2”.

2. Set the region.

3. To create a new Instance, click on “Launch Instance”.

4. To choose an Amazon Machine Image (AMI), Select “Ubuntu Server 14.04 LTS
(HVM)”.

5. To choose an Instance type, select “t2.medium”.

6. Click “Next: Configure Instance Details”.

7. From IAM role drop down box, select “admin”. Select “Prevention against accidental
termination” check box. Then hit “Next: Add Storage ”.

8. If you don’t have admin role. Go to Dashboard and click IAM. Create a new role.
Under AWS service role select Amazon EC2. It will show different policy templates.
Choose “administrator access” and save.

9. Click “Next: Tag Instance” again in Storage device settings. (default settings)

10. Select “Create a new security group” checkbox. > Security Group name -> “open
ports”.

11. (May not be needed!) To enable ping, select “All ICMP” in the Create a new rule
drop-down and click on “Add Rule.” Do the same to enable HTTP (port 80 & 8000)
accesses, then click “Continue.”

12. (May not be needed!) To allow Hadoop to communicate and expose various web
interfaces, we need to open a number of ports: 22, 9000, 9001, 50070, 50030, 50075,
50060. Again click on “Add Rule” and enable these ports. Optionally you can enable all
traffic. But be careful and don’t share your PEM key or aws credentials with anyone or

Hadoop: Setting up Hadoop 2.7.3 (single node) on AWS EC2
Ubuntu AMI
Saturday, February 11, 2017 2:05 PM

 Linux Page 1

https://sagarruchandani.wordpress.com/2015/08/01/hadoop-setting-up-hadoop-2-6-0-single-node-on-aws-ec2-ubuntu-ami/
https://sagarruchandani.wordpress.com/2015/08/01/hadoop-setting-up-hadoop-2-6-0-single-node-on-aws-ec2-ubuntu-ami/

traffic. But be careful and don’t share your PEM key or aws credentials with anyone or
on websites like Github.

13. Review: Click “Launch” and click “Close” to close the wizard.

14. Now to access your EC2 Instances, click on “instances” on your left pane.

15. Select the instance check box and hit “Launce Instance” (It will take a while to start
the virtual instance. Go ahead once its shows it is “running”).

16. Now click on “connect” for how to SSH in your instance.

PART 2: Installing Apache Hadoop

1. Login to new EC2 instance using ssh

ssh -i aws-key.pem ubuntu@172.31.58.109

2. Install base packages (java 8)

sudo apt-get install python-software-properties

sudo add-apt-repository ppa:webupd8team/java

sudo apt-get update

sudo apt-get install oracle-java8-installer

Note: If you have any other version of Java, it is fine as long as you keep the directory
paths proper in the below steps.

3. Check the java version

java –version

4. Download latest stable Hadoop using wget from Apache mirrors (the following link
may be invalid).

wget http://www-

us.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

tar xzf hadoop-2.7.3.tar.gz

5. (Optional) Create a directory where the hadoop will store its data. We will set this
directory path in hdfs-site.

mkdir hadoopdata

 Linux Page 2

http://www-us.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz
http://www-us.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

mkdir hadoopdata

6. Add the Hadoop related environment variables in your bash file.

vim ~/.bashrc

Copy and paste these environment variables.

export HADOOP_HOME=/home/ubuntu/hadoop-2.7.3

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

export JAVA_HOME=/usr/lib/jvm/java-8-oracle

PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

Save and exit and use this command to refresh the bash settings.

source ~/.bashrc

7. Setting hadoop environment for password less ssh access. Password less SSH
Configuration is a mandatory installation requirement. However it is more useful in
distributed environment.

ssh-keygen -t rsa -P ''

cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

-> Modify the config file

sudo vim /etc/ssh/sshd_config

-> Find the following line and edit accordingly. You can use ctrl+W and type
PasswordAuthentication to quickly find the wanted line.

PasswordAuthentication yes

-> Save the config file. Then restart the ssh service for the update to take action.

sudo service ssh restart

-> check password less ssh access to localhost

ssh localhost

-> exit from inner localhost shell

exit

8. Set the hadoop config files. We need to set the below files in order for hadoop to

 Linux Page 3

core-site.xml•

hadoop-env.sh•

yarn-site.xml•

hdfs-site.xml•

mapred-site.xml•

8. Set the hadoop config files. We need to set the below files in order for hadoop to
function properly.

Copy and paste the below configurations in core-site.xml•

-> go to directory where all the config files are present (cd
/home/ubuntu/hadoop-2.7.3/etc/hadoop)

-> Add the following text between the configuration tabs.

<property>

<name>hadoop.tmp.dir</name>

<value>/home/ubuntu/hadooptmp/hadoop-${user.name}</value>

<description>A base for other temporary directories.</description>

</property>

<property>

<name>fs.defaultFS</name>

<value>hdfs://localhost:9000</value>

Copy and paste the below configurations in hadoop-env.sh•

</property>

-> get the java home directory using:

readlink -f `which java`

Example output: /usr/lib/jvm/java-8-oracle/jre/bin/java (NOTE THE JAVA_HOME PATH.
JUST GIVE THE BASE DIRECTORY PATH)

-> Need to set JAVA_HOME in hadoop-env.sh

Copy and paste the below configurations in mapred-site.xml

export JAVA_HOME=/usr/lib/jvm/java-8-oracle

 Linux Page 4

Copy and paste the below configurations in mapred-site.xml•

-> copy mapred-site.xml from mapred-site.xml.template

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

-> Add the following text between the configuration tabs.

<property>

<name>mapred.job.tracker</name>

<value>localhost:9001</value>

Copy and paste the below configurations in yarn-site.xml•

</property>

-> Add the following text between the configuration tabs.

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

Copy and paste the below configurations in hdfs-site.xml•

</property>

-> Add the following text between the configuration tabs.

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property><name>dfs.name.dir</name>

<value>file:/home/ubuntu/hadoopdata/hdfs/namenode</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>file:/home/ubuntu/hadoopdata/hdfs/datanode</value>

 Linux Page 5

</property>

9. Formatting the HDFS file system via NameNode (after installing hadoop, for the first
time we have to format the HDFS file system to make it work)

hdfs namenode -format

10. Issue the following commands to start hadoop

start-dfs.sh

start-yarn.sh

11. Check for hadoop processes /daemons running on hadoop with Java Virtual
Machine Process Status Tool.

jps

PART 3: Running a Sample Word Count Program

The MapReduce examples which comes along with hadoop package are located in
hadoop-[VERSION]/share/hadoop/mapreduce. You can run those jars to see whether
hadoop single node cluster is set up properly.

1. Create two test files, i.e., file01, and file02: (the following screenshot shows the
content of the two files)

2. Now create a directory in Hadoop’s Distributed File System using:

hdfs dfs -ls /

hdfs dfs -mkdir /input

You may need to leave the safe mode before you create the folder.

 Linux Page 6

Go to the folder where files are copied and from that folder run the command

hdfs dfs -copyFromLocal file0* /input

3. Run the hadoopmapreduce-examples-2.7.3.jar as follows: (Note that the output
folder should be a new path!)

hadoop jar

/home/ubuntu/hadoop-2.7.3/share/hadoop/mapreduce/hadoopmapreduce-

examples-2.7.3.jar wordcount /input /out

4. To see the results file,

hdfs dfs -cat /out/part-r-00000

TURN OFF Hadoop

Stop individual services by following commands:

stop-dfs.sh

stop-yarn.sh

 Linux Page 7

!!! Additional Problems:

When you try to start the Hadoop services “start-dfs.sh”, you would see the following
warnings:

WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java
classes where applicable

After a continuous research as suggested by KotiI got resolved the issue.

hduser@ubuntu:~$ cd /usr/local/hadoop

hduser@ubuntu:/usr/local/hadoop$ ls

bin include libexec logs README.txt share
etc lib LICENSE.txt NOTICE.txt sbin

hduser@ubuntu:/usr/local/hadoop$ cd lib

hduser@ubuntu:/usr/local/hadoop/lib$ ls
native

hduser@ubuntu:/usr/local/hadoop/lib$ cd native/

hduser@ubuntu:/usr/local/hadoop/lib/native$ ls

libhadoop.a libhadoop.so libhadooputils.a libhdfs.so
libhadooppipes.a libhadoop.so.1.0.0 libhdfs.a libhdfs.so.0.0.0

hduser@ubuntu:/usr/local/hadoop/lib/native$ sudo mv * ../

Cheers!

Summarized by Harry CUI on 24-Feb-2017.

 Linux Page 8

